Characterization of Influenza H5N1 Nucleocapsid Protein for Potential Vaccine Design


Avian influenza, subtype H5N1, causes occasional but serious infections in humans and efforts to produce vaccines against this strain continue. Current influenza vaccines are prophylactic and utilize the two major antigens, hemagglutinin and neuraminidase. Nucleocapsid protein (NP) is an attractive alternative antigen because it is highly conserved across all influenza strains, has been shown to increase the rate of viral clearance, and potential therapeutic vaccines would elicit cytotoxic T lymphocyte responses in an infected person. The NP antigen from H5N1 was characterized using a variety of physico-chemical methods to gain insights into both the biological and physical properties of the antigen which are important from a regulatory viewpoint when considering therapeutic vaccines. Results obtained to date show that NP is relatively unstable and indicate that the conformation of the H5N1 NP antigen is highly dependent upon purification procedure, buffer conditions, pH and the presence or absence of RNA. These factors will need to be clearly defined and taken into consideration when manufacturing and regulating NP vaccine preparations.

Share and Cite:

A. Buffone, S. Dionne and M. Hefford, "Characterization of Influenza H5N1 Nucleocapsid Protein for Potential Vaccine Design," World Journal of Vaccines, Vol. 2 No. 3, 2012, pp. 125-142. doi: 10.4236/wjv.2012.23017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] World Health Organization, Influenza-Seasonal Fact Sheet 211. Available via WHO Media Centre, 2009.
[2] J. A. Wiley, R. J. Hogan, D. L. Woodland and A. G. Harmsen, “Antigen-Specific CD8(+) T Cells Persist in the Upper Respiratory Tract Following Influenza Virus Infection,” The Journal of Immunology, Vol. 167, No. 6, 2001, pp. 3293-3299.
[3] G. F. Rimmelzwaan and A. D. Osterhaus, “Cytotoxic T Lymphocyte Memory: Role in Cross-Protective Immunity against Influenza?” Vaccine, Vol. 13, No. 8, 1995, pp. 703-705.
[4] A. J. McMichael and B. A. Askonas, “Influenza Virus-Specific Cytotoxic T Cells in Man; Induction and Properties of the Cytotoxic Cell,” European Journal of Immunology, Vol. 8, No. 10, 1978, pp. 705-711. doi:10.1002/eji.1830081007
[5] C. Gschoesser, G. Almanzar, U. Hainz, J. Ortin, D. Schonitzer, H. Schild, M. Saurwein-Teissl and B. GrubeckLoebenstein, “CD4+ and CD8+ Mediated Cellular Immune Response to Recombinant Influenza Nucleoprotein,” Vaccine, Vol. 20, No. 31-32, 2002, pp. 3731-3738. doi:10.1016/S0264-410X(02)00355-9
[6] D. M. Carragher, D. A. Kaminski, A. Moquin, L. Hartson and T. D. Randall, “A Novel Role for Non-Neutralizing Antibodies against Nucleoprotein in Facilitating Resistance to Influenza Virus,” The Journal of Immunology, Vol. 181,No. 6, 2008, pp. 4168-4176.
[7] M. W. LaMere, H. T. Lam, A. Moquin, L. Haynes, F. E. Lund, T. D. Randall and D. A. Kaminski, “Contributions of Antinucleoprotein IgG to Heterosubtypic Immunity against Influenza Virus,” The Journal of Immunology, Vol. 186, No. 7, 2011, pp. 4331-4339. doi:10.4049/jimmunol.1003057
[8] M. W. Lamere, A. Moquin, F. E. Lee, R. S. Misra, P. J. Blair, L. Haynes, T. D. Randall, F. E. Lund and D. A. Kaminski, “Regulation of Antinucleoprotein IgG by Systemic Vaccination and Its Effect on Influenza Virus Clearance,” Journal of Virology, Vol. 85, No. 10, 2011, pp. 5027-5035. doi:10.1128/JVI.00150-11
[9] Q. Ye, R. M. Krug and Y. J. Tao, “The Mechanism by Which Influenza A Virus Nucleoprotein Forms Oligomers and Binds Rna,” Nature, Vol. 444, No. 7122, 2006, pp. 1078-1082. doi:10.1038/nature05379
[10] S. Roy, G. P. Kobinger, J. Lin, J. Figueredo, R. Calcedo, D. Kobasa and J. M. Wilson, “Partial Protection against H5N1 Influenza in Mice with a Single Dose of a Chimpanzee Adenovirus Vector Expressing Nucleoprotein,” Vaccine, Vol. 25,No. 39-40, 2007, pp. 6845-6851. doi:10.1016/j.vaccine.2007.07.035
[11] D. B. Volkin and C. R. Middaugh, “Vaccines as Physically and Chemically Well-Defined Pharmaceutical Dosage Forms,” Expert Review of Vaccines, Vol. 9, No. 7, 2010, pp. 689-691. doi:10.1586/erv.10.73
[12] N. C. Pace, B. A. Shirley and J. A. Thomson, “Measuring the Conformational Stability of a Protein”.
[13] B. L. Pasloske, “Chapter 8: Ribonuclease Inhibitors,” In: C. H. Schein, Ed., Methods in Molecular Biology: Nuclease Methods and Protocols, Humana Press Inc., Totowa, p. 105.
[14] N. J. Greenfield, “Using Circular Dichroism Collected as a Function of Temperature to Determine the Thermodynamics of Protein Unfolding and Binding Interactions,” Nature Protocols, Vol. 1, No. 6, 2006, pp. 2527-2535.
[15] N. J. Greenfield, “Methods to Estimate the Conformation of Proteins and Polypeptides from Circular Dichroism Data,” Analytical Biochemistry, Vol. 235, No. 1, 1996, pp. 1-10. doi:10.1006/abio.1996.0084
[16] M. I. Barría, A. González, J. Vera-Otarola, U. León, V. Vollrath, D. Marsac, O. Monasterio, T. Pérez-Acle, A. Soza and M. López-Lastra, “Analysis of Natural Variants of the he Patitis C Virus Internal Ribosome Entry Site Reveals That Primary Sequence Plays a Key Role in Cap-Independent Translation,” Nucleic Acids Research, Vol. 37, No. 3, 2009, pp. 957-971. doi:10.1093/nar/gkn1022
[17] J. A. Gally and G. M. Edelman, “The Effect of Temperature on the Fluorescence of Some Aromatic Amino Acids and Proteins,” Biochimica et Biophysica Acta, Vol. 60, No. 3, 1962, pp. 499-509. doi:10.1016/0006-3002(62)90869-7
[18] A. K. Ng, H. Zhang, K. Tan, Z. Li, J. H. Liu, P. K. Chan, S. M. Li, W. Y. Chan, S. W. Au, A. Joachimiak, T. Walz, J. H. Wang and P. C. Shaw, “Structure of the Influenza Virus A H5N1 Nucleoprotein: Implications for RNA Binding, Oligomerization, and Vaccine Design,” The FASEB Journal, Vol. 22, No. 10, 2008, pp. 3638-3647. doi:10.1096/fj.08-112110
[19] A. K. Ng, J. H. Wang and P. C. Shaw, “Structure and Sequence Analysis of Influenza A Virus Nucleoprotein,” Science in China Series C: Life Sciences, Vol. 52, No. 5, 2009, pp. 439-449. doi:10.1007/s11427-009-0064-x
[20] W. H. Chan, A. K. Ng, N. C. Robb, M. K. Lam, P. K. Chan, S. W. Au, J. H. Wang, E. Fodor and P. C. Shaw, “Functional Analysis of the Influenza Virus H5N1 Nucleoprotein Tail Loop reveals Amino Acids That Are Crucial for Oligomerization and Ribonucleoprotein Activities,” Journal of Virology, Vol. 84, No. 14, 2010, pp. 7337-7345. doi:10.1128/JVI.02474-09
[21] F. Iseni, A. Barge, F. Baudin, D. Blondel and R. W. Ruigrok, “Characterization of Rabies Virus Nucleocapsids and Recombinant Nucleocapsid-Like Structures,” Journal of General Virology, Vol. 79, Part 12, 1998, pp. 2909-2919.
[22] T. Noda, K. Hagiwara, H. Sagara and Y. Kawaoka, “Characterization of the Ebola Virus Nucleoprotein-RNA Complex,” Journal of General Virology, Vol. 91, Part 6, 2010, pp. 1478-1483.
[23] T. J. Green, S. Macpherson, S. Qiu, J. Lebowitz, G. W. Wertz and M. Luo, “Study of the Assembly of Vesicular Stomatitis Virus N Protein: Role of the P Protein,” Journal of Virology, Vol. 74,No. 20, 2000, pp. 9515-9524. doi:10.1128/JVI.74.20.9515-9524.2000
[24] Food and Drug Administration, Department of Health and Human Services, “International Conference on Harmonisation; Guidance on Q5E Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process; Availability. Notice,” Federal Register, Vol. 70, No. 125, 2005, pp. 37861-37862.
[25] A. L. Fink, L. J. Calciano, Y. Goto, T. Kurotsu and D. R. Palleros, “Classification of Acid Denaturation of Proteins: Intermediates and Unfolded States,” Biochemistry, Vol. 33, No. 41, 1994, pp. 12504-12511. doi:10.1021/bi00207a018
[26] E. Ahmad, S. Fatima, M. M. Khan and R. H. Khan, “More Stable Structure of Wheat Germ Lipase at Low pH than Its Native State,” Biochimie, Vol. 92, No. 7, 2010, pp. 885-893. doi:10.1016/j.biochi.2010.03.023
[27] T. Creighton, “Proteins: Structures and Molecular Properties,” W.H. Freeman and Company, New York, 1997.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.