[1]
|
Couillard, Y., Courcelles, M., Cattaneo, A., and Wunsam, S., 2004, A Test of Integrity of Metal Records in Sediment Cores Based on the Documented History of Metal Contamination in Lac Dufault (Québec, Canada), J. Paleolimnol., Vol. 32, Issue 2, 149 – 162.
|
[2]
|
Parker, R., Dumaresq, C., 2002. Effluent Characterization, Water Quality Monitoring and Sediment Monitoring in the Metal Mining EEM Program. Water Qual. Res. J. Can. Vol. 37, No. 1, 219 – 228.
|
[3]
|
Annadurai, G., Juang, R-S., Lee, D-J., 2002, Adsorption of Heavy Metals from Water Using Banana and Orange Peels, Water Sci. Technol., Vol. 37, No. 1, 185 – 190.
|
[4]
|
Zarraa, M. A., 1995, Study on the Removal of Chromium (VI) from Wastes Solutions by Adsorption onto Sawdust in Vessels, Ads. Sci. and Technol., Vol. 12, Issue 2, 129 – 138.
|
[5]
|
Coupal, B., and Lalancette, J.-M., 1976, The Treatment of Wastewaters With peat Moss. Water Res., Vol. 10, Issue 12, 1071 – 1076.
|
[6]
|
Bloom, P. R., and McBride, M. B., 1979, Metal Ion Binding and Exchange with Hydrogen Ions in Acid-Washed Peat, Soil Sci. Soc. Am. J. Vol. 43, Issue 4, 687 – 692.
|
[7]
|
Blanachard, G., Muanaye, M., and Martin, G., 1984, Removal of Heavy Metals from Water by Means of Natural Zeolites, Water. Res., Vol. 18, No. 12, 1501 – 1507.
|
[8]
|
Bailey, S. E., Olin, T. J., Bricka, R. M., and Adrian, D. D., 1999, A Review of Potentially Low-Cost Sorbents for Heavy Metals, Water Res. 33, No. 11, 2469–2479.
|
[9]
|
Dissanayake, C. B., and Weerasooriya, S. V. R., 1981, Peat as a Metal-Trapping Material in Purification of Industrial Effluents, Int. J. Environ. Stud., Vol. 17, No. 3, pp 233 – 238.
|
[10]
|
Babel, S., Kurniawan, T. A., 2003. Low-cost Adsorbents for Heavy Metals Uptake from Contaminated Water: a Review. J. Hazardous Mat. B97, Issues 1 – 3, 119-243.
|
[11]
|
US Market Information, 2008, Personal Communication.
|
[12]
|
USGS 2006a, Mineral Commodity Summaries. http://minerals.usgs.gov/minerals/pubs/mcs/accessed 10th November, 2008.
|
[13]
|
USGS 2006b, Mineral Commodity Summaries. http://miinerals.usgs.gov/minerals/pubs/mcs/ accessed 10th November, 2008.
|
[14]
|
USGS 2006c, Mineral Commodity Summaries.
http:// minerals.usgs.gov/minerals/pubs/mcs/accessed 10th November, 2008.
|
[15]
|
Pérez, J. I., Hontoria, E., Zamorano, and M., Gomez, M. A., 2005, Wastewater Treatment Using Fibrist and Saprist Peat: A Comparative Study, J. Environ. Sci. Health A., Vol. 40, Issue 5, 1021 – 1032.
|
[16]
|
Twardowska, I., Kyziol, J., Goldrath, T., and Avnimelech, Y., 1999, Adsorption of Zinc onto Peat from Peatlands of Poland and Israel, J. Geochemical Exploration, Vol. 66, Issues 1 – 2, 387 – 405.
|
[17]
|
Martinez-Cortizas, A., Ponteveda-Pombai, X., Garcia – Rodeja, E., Nóvoa-Munoz, J. C., and Shotyk, W., 1999, Mercury in a Spanish Peat Bog: Archive of Climate Change and Atmospheric Metal Deposition, Sci., Vol. 284, No. 5416, 939 – 942.
|
[18]
|
Bohlin, E., Hamalainen, M., and Sunden, T., 1989, Botanical and Chemical Characterization of Peat Using Multivariate Methods, J. Soil Sci., Vol. 147, No. 4, 252 – 263.
|
[19]
|
Nordén, B., Bohlin, E., Nilsson, M., Albano, A., and Rockner, C., 1992, Characterization of Particle Size Fractions of Peat, An Integrated Biological, Chemical, and Spectroscopic Approach, Soil Sci., Vol. 153, No. 5, 382 – 396.
|
[20]
|
Spedding, P. J., 1988, Peat – Review, Fuel, Vol. 67, Issue 7, pp 883 – 900.
|
[21]
|
Niemeyer, J., Chen, Y., and Bollag, J.-M., 1992, Characterization of Humic Acids, Composts, and Peat by Diffuse Reflectance Fourier-Transform Infrared Spectroscopy, Soil Sci. Soc.Am. J. Vol. 56, No. 1, 135-140.
|
[22]
|
Baran, A., 2002, Characterization of Carex Peat Using Extinction Values of Humic Acids, Bioresource Technol., Vol. 85, Issue 1, 99-101.
|
[23]
|
Li, H., Parent, L. E., Karam, A., and Tremblay, C., 2004, Potential of Sphagnum Peat for improving Soil Organic Matter, Water Holding Capacity, Bulk Density and Potato Yield in a Sandy Soil, Plant Soil, Vol. 265, No. 1 - 2, 355 – 365.
|
[24]
|
Gondar, D., Lopez, R., Fiol, S., Antelo, J. M., and Arce, F., 2005, Characterization and Acid-Base Properties of Fulvic and Humic Acids isolated from two Horizons of an Om-brotrophic Peat Bog, Geoderma, Vol. 126, Issues 3 – 4, 367 – 374.
|
[25]
|
Fong, S. S., and Mohamed M., 2007, Chemical Characterization of Humic Substances Occurring in the Peats of Sarawak, Malaysia, Org. Geochem. Vol. 38, Issue 6, 967 – 976.
|
[26]
|
Burba, P., Beer, A.-M., and Lukanov, J., 2001, Metal Distribution and Binding in Balneological Peats and their Aqueous Extracts, Fresenius J. Anal. Chem., Vol.37, No. 4, 419 – 425.
|
[27]
|
Ho, Y. S., Wase, D. A. J., Forster, C. F., 1995. Batch Nickel Removal from Aqueous Solution by Sphagnum Moss Peat, Water Res., Vol. 29, Issue 5, 1327 – 1332.
|
[28]
|
Crist, R. H., Martin J. R., Chonko, J., Crist, D. R., (1996). Uptake of Metals on Peat Moss: An ion Exchange Process. Env. Sc. and Technol. Vol. 30, No. 8, 2456 – 2461.
|
[29]
|
Ringqvist, L., Holmgren, A., Oborn, I., 2002. Poorly Humified Peat as an Adsorbent for Metals in Wastewater, Water Res., Vol. 36, Issue 9, 2394 – 2404.
|
[30]
|
Kadlec, R. H., and Keoleian, G. A., 1986, Metal Ion Exchange on Peat in Peat and Water, Ed (Fuchsman, C. H.,) Elsevier Applied Science Publishers Ltd, 61-93.
|
[31]
|
Kuziemska, I., and Quant, B., 1998, Peat as a Sorbent for Heavy Metal Removal from Water and Wastewater, Proceedings of Green, the Int.Symposium on Geotechnics Related to Environment. 2, 308 – 312.
|
[32]
|
Pollet, F., Lane, C. M., Gover, F., and McKillop, J. H., 1968, Peat Resources of Newfoundland. Mineral Resources Report No. 2, 4-5.
|
[33]
|
Annual Books of ASTM Standards, 2006, Section 4: Construction. 04.08. Soil and Rock (I) D420 –D5611.
|
[34]
|
Sheldrick, B. H., (Ed) 1984, Analytical Methods Manual, LRRI Contributions No. 84 -30. Research Branch, Agriculture Canada, 6/1-3.
|
[35]
|
Malterer, T. J., Verry, E. S., and Erjavec, J., 1992,Fiber Content and Degree of Decomposi-tion in Peats: Review of National Methods. Soil Sci. Soc. Vol. 56, Issue 4, 1200 – 1211.
|
[36]
|
Bozkhurt, S., Lucisano, M., Moreno, L., and Neretnieks, I., 2001, Peat as a Potential Ana-logue for the Long-Term Evolution in Landfills, Earth-Sci. Rev. Vol. 53, Issues 1 – 2, 95-147.
|
[37]
|
Romao, L. P. C., Lead, J. R., Rocha, J. C., de Oliveira, L. C., Rosa, A. H., Mendonca, A. G. R., and Ribeiro, A. d-S., 2007, Structure and Properties of Brazilian Peat: Analysis by Spectroscopy and Microscopy. J. Braz. Chem. Soc. Vol. 18, No. 4, 714 – 720.
|
[38]
|
Twardowska, I., and Kyziol, J., 1996, Binding and Chemical Fractionation of Heavy Metals in Typical Peat Matter. Fresen. J. Anal. Chem. Vol. 354, No. 5 – 6, 580-586.
|
[39]
|
Lange, N.A. and Speight, J.G., 2005, Lange’s handbook of Chemistry, 16th Ed., McGraw-Hill, Inc.
|
[40]
|
Coates, J., 2000, Interpretation of Infrared Spectra, A Practical Approach, IN Meyers, R.A. (Ed.) Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., UK, 10815-10837.
|
[41]
|
Orem, W. H., Neuzil, S. G., Lerch, H. E., and Cecil, C. B., 1996, Experimental early-stage coalification of a peat sample and a peatified wood sample from Indonesia, Org. Geochem., Vol. 24, No. 2, 111-125.
|
[42]
|
Artz, R. R. E., Chapman, S. J., Robertson, A. H. J., Potts, J. M., Lag-goun-Défarge, F., Gogo, S., Comot, L., Disnar, J. R., and Francez, A. J., 2008, FTIR spectroscopy can be used as a screening tool for organic matter quality regenerating cutover peatlands, Soil Biol and Biochem., Vol 40, No. 2, 515-527.
|
[43]
|
Cabaniss, S. E., 2008, Quantitative Structure – Property Relationships for Predicting Metal Binding by Organic Ligands, Environ. Sci. Technol., Vol. 42, No. 14, 5210 – 5216.
|
[44]
|
Preston, C. M., Axelson, D. E., Lévesque, M., Mathur, S. P., Dinel, H., and Dudley, R. L., 1989, Carbon-13 NMR and Chemical Characterization of Particle –Size Separates of Peats Differing in Degree of Decomposition, Org. Geochem., Vol. 14, No. 4, 393 – 403.
|
[45]
|
Baldrock, J. A., Oades, J. M., Waters, A. G., Peng, X., Vassallo, A. M., and Wilson, M. A., 1992, Aspects of the Chemical Structure of Soil Organic Materials as Revealed by Soli-State 13C NMR Spectroscopy, Biogeochem., Vol. 16, No. 1, 1 – 42.
|
[46]
|
Mao, J-D., Hu, W-G., Schmidt-Rohr, K., Davies, G., Ghannour, E. A., and Xing, B., 2000, Quantitative Characterization of Humic Substances by Solid-State Carbon-13 NMR, Soil Sci. Soc. Am. J., Vol. 64, No. 3, 873 – 884.
|
[47]
|
Almendros, G., Knicker, H., and Gonzalez-Vila, J., 2003, Rearrangement of Carbon and Nitrogen forms in Peat after Progressive Thermal Oxidation as Determined by Solid State 13C and 15N-NMR Spectroscopy, Org. Geochem., Vol. 34, Issue 11, 1559 – 1568.
|