Control Chaos in System with Fractional Order


In this paper, by utilizing the fractional calculus theory and computer simulations, dynamics of the fractional order system is studied. Further, we have extended the nonlinear feedback control in ODE systems to fractional order systems, in order to eliminate the chaotic behavior. The results are proved analytically by stability condition for fractional order system. Moreover numerical simulations are shown to verify the effectiveness of the proposed control scheme.

Share and Cite:

Y. Wang, X. Yin and Y. Liu, "Control Chaos in System with Fractional Order," Journal of Modern Physics, Vol. 3 No. 6, 2012, pp. 496-501. doi: 10.4236/jmp.2012.36067.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. C. Koeller, “Application of Fractional Calculus to the Theory of Viscoelasticity,” Journal of Applie, Vol. 51, No. 2, 1984, pp. 299-307. doi:10.1115/1.3167616
[2] H. H. Sun, A. A. Abdelwahad and B. Onaral, “Linear Approximation of Transfer Function with a Pole of Fractional Order,” IEEE Transactions on Automatic Control, Vol. 29, No. 5, 1984, pp. 441-444. doi:10.1109/TAC.1984.1103551
[3] M. Ichise, Y. Nagayanagi and T. Kojima, “An Analog Simulation of Noninteger Order Transfer Functions for Analysis of Electrode Process,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 33, No. 2, 1971, pp. 253-265. doi:10.1016/S0022-0728(71)80115-8
[4] O. Heaviside, “Electromagnetic Theory,” Chelsea, New York, 1971.
[5] T. T. Hartley, C. F. Lorenzo and H. K. Qammer, “Chaos in a Fractional Order Chua’s System,” IEEE Transactions on Circuits and Systems I, Vol. 42, No. 8, 1995, pp. 485- 490.
[6] I. Grigorenko and E. Grigorenko, “Chaotic Dynamics of the Fractional Lorenz System,” Physical Review Letters, Vol. 91, No. 3, 2003, Article ID: 034101. doi:10.1103/PhysRevLett.91.034101
[7] C. Li and G. Chen, “Chaos in the Fractional Order Chen System and Its Control,” Chaos, Solitons and Fractals, Vol. 22, No. 3, 2004, pp. 549-554. doi:10.1016/j.chaos.2004.02.035
[8] C. P. Li and G. J. Peng, “Chaos in Chen’s System with a Fractional Order,” Chaos, Solitons and Fractals, Vol. 22, No. 2, 2004, pp. 443-450. doi:10.1016/j.chaos.2004.02.013
[9] Z. M. Ge and A. R. Zhang, “Chaos in a Modified van der Pol System and in Its Fractional Order Systems,” Chaos, Solitons and Fractals, Vol. 35, No. 2, 2007, pp. 1791- 1822 . doi:10.1016/j.chaos.2005.12.024
[10] C. G. Li and G. R. Chen, “Chaos and Hyperchaos in Fractional Order Rossler Equation,” Physica A, Vol. 341, No. 10, 2004, pp. 55-61. doi:10.1016/j.physa.2004.04.113
[11] W. Zhang, S. Zhou, H. Li and H. Zhu, “Chaos in a Fractional-Order Rossler System,” Chaos, Solitons and Fractals, Vol. 42, No. 3, 2009, pp. 1684-1691. doi:10.1016/j.chaos.2009.03.069
[12] D. G. Varsha and B. Sachin, “Chaos in Fractional Ordered Liu System,” Computers & Mathematics with Applications, Vol. 59, No. 3, 2010, pp. 1117-1127. doi:10.1016/j.camwa.2009.07.003
[13] M. Caputo, “Linear Models of Dissipation Whose Q Is Almost Frequency Independent-II,” Geophysical Journal of the Royal Astronomical Society, Vol. 13, No. 5, 1967, pp. 529-539. doi:10.1111/j.1365-246X.1967.tb02303.x
[14] J. W. Xiang and W. Hui, “A New Chaotic System with Fractional Order and Its Projective Synchronization,” Nonlinear Dynamic, Vol. 61, No. 3, 2010, pp. 407-417. doi:10.1007/s11071-010-9658-x
[15] K. Diethelm, N. J. Ford and A. D. Freed, “A Predictor-Corrector Approach for the Numerical Solution,” Nonlinear Dynamic, Vol. 29, No. 1-4, 2002, pp. 3-22. doi:10.1023/A:1016592219341

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.