Switchgrass (Panicum virgatum) Extract Mediated Green Synthesis of Silver Nanoparticles


A novel switchgrass (Panicum virgatum) extract mediated green process was demonstrated for the synthesis of silver nanoparticles from silver nitrate solution at ambient temperature. UV-visible spectroscopic analysis indicates the rapid reduction of silver (Ag+) ions by swithgrass extract. The silver nanoparticles began to form at 15 min and the reduction reaction was completed within 2 hours. Synthesized silver nanoparticles were subjected to x-ray diffraction (XRD) for structural characterization, which confirms the FCC symmetry of silver nanoparticles with the lattice parameter of 4.0962 ?. The particle size of bio-synthesized silver nanoparticles was identified through transmission electron microscopic (TEM) analysis and found to be in the range of 20 - 40 nm.

Share and Cite:

Mason, C. , Vivekanandhan, S. , Misra, M. and Mohanty, A. (2012) Switchgrass (Panicum virgatum) Extract Mediated Green Synthesis of Silver Nanoparticles. World Journal of Nano Science and Engineering, 2, 47-52. doi: 10.4236/wjnse.2012.22008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Kumar, P. K. Vemula, P. M. Ajayan and G. John, “Silver Nanoparticle Embedded Antimicrobial Paints Based on Vegetable Oil,” Nature Materials, Vol. 7, 2008, pp. 236-241. doi:10.1038/nmat2099
[2] L. S. Nair and C. T. Laurencin, “Silver Nanoparticles: Synthesis and Therapeutic Applications,” Journal of Biomedical Nanotechnology, Vol. 3, No. 4, 2007, pp. 301-316. doi:10.1166/jbn.2007.041
[3] J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong and M. H. Cho, “Antimicrobial Effects of Silver Nanoparticles,” Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, 2007, pp. 95-101. doi:10.1016/j.nano.2006.12.001
[4] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ram′?rez and M. J. Yacaman, “The Bactericidal Effect of Silver Nanoparticles,” Nanotechnology, Vol. 16, No. 10, 2005, pp. 2346-2353. doi:10.1088/0957-4484/16/10/059
[5] C. M. Jones, E. M. V. Hoek, “A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment,” Journal of Nanoparticle Research, Vol. 12, No. 5, 2010, pp. 1531-1551. doi:10.1007/s11051-010-9900-y
[6] C. J. Murphy, A, M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard and P. Hankins, “Chemical Sensing and Imaging with Metallic Nanorods,” Chemical Communications, No. 5, 2008, pp. 544-557. doi:10.1039/b711069c
[7] A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne and S. Zou, “Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy,” MRS Bulletin, Vol. 30, No. 5, 2005, pp. 368-375. doi:10.1557/mrs2005.100
[8] Z. J. Jiang, C. Y. Liu and L. W. Sun, “Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres,” The Journal of Physical Chemistry B, Vol. 109, No. 5, 2005, pp. 1730-1735. doi:10.1021/jp046032g
[9] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape and Dielectric Environment,” The Journal of Physical Chemistry B, Vol. 107, No. 5, 2003, pp. 668-677. doi:10.1021/jp026731y
[10] A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen and D. L. Feldheim, “Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting,” Journal of the American Chemical Society, Vol. 125, No. 16, 2003, pp. 4700-4701. doi:10.1021/ja0296935
[11] M. Chen, Y. G. Feng, X. Wang, T. C. Li, J. Y. Zhang and D. J. Qian, “Silver Nanoparticles Capped by Oleylamine: Formation, Growth and Self-Organization,” Langmuir, Vol. 23, No. 10, 2007, pp. 5296-5304. doi:10.1021/la700553d
[12] C. Aymonier, U. Schlotterbeck, L. Antonietti, P. Zacharias, R. Thomann, J. C. Tiller and S. Mecking, “Hybrids of Silver Nanoparticles with Amphiphilic Hyperbranched Macromolecules Exhibiting Antimicrobial Properties,” Chemical Communications, No. 24, 2002, pp. 3018-3019. doi.:10.1039/b208575e
[13] J. P. Abid, A. W. Wark, P. F. Brevet and H. H. Girault, “Preparation of Silver Nanoparticles in Solution from a Silver Salt by Laser Irradiation,” Chemical Communications, No. 7, 2002, pp. 792-793. doi:10.1039/b200272h
[14] R. Das, S. S. Nath, D. Chakdar, G. Gope and R. Bhattacharjee, “Synthesis of Silver Nanoparticles and Their Optical Properties,” Journal of Experimental Nanoscience, Vol. 5, No.4, 2010, pp 357-362. doi:10.1080/17458080903583915
[15] M. Gericke and A. Pinches, “Biological Synthesis of Metal Nanoparticles,” Hydrometallurgy, Vol. 83, No. 1-4, 2006, pp. 132-140. doi:10.1016/j.hydromet.2006.03.019
[16] K. Badri Narayanan and N. Sakthivel, “Biological Synthesis of Metal Nanoparticles by Microbes,” Advances in Colloid and Interface Science, Vol. 156, No. 1-2, 2010, pp. 1-13. doi:10.1016/j.cis.2010.02.001
[17] M. Sastry, A. Ahmad, M. Islam Khan and R. Kumar, “Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete,” Current Science, Vol. 85, No. 2, 2003, pp. 162-170.
[18] S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary and K. Srinivasan, “Biosynthesis of Silver Nanoparticles Using Citrus Sinensis Peel Extract and Its Antibacterial Activity,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 79, No. 3, 2011, pp. 594-598. doi:10.1016/j.saa.2011.03.040
[19] D. Philip, “Green Synthesis of Gold and Silver Nanoparticles Using Hibiscus Rosa Sinensis,” Physica E, Vol. 42, No. 5, 2010, pp. 1417-1424. doi:10.1016/j.physe.2009.11.081
[20] V. Kumar, S. C. Yadav and S. K. Yadav, “Syzygium Cumini Leaf and Seed Extract Mediated Biosynthesis of Silver Nanoparticles and Their Characterization,” Journal of Chemical Technology & Biotechnology, Vol. 85, No. 10, 2010, pp. 1301-1309. doi:10.1002/jctb.2427
[21] S. S. Shankar, A. Ahmad and M. Sastry, “Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles,” Biotechnology Progress, Vol. 19, No. 6, 2003, pp. 1627-1631. doi:10.1021/bp034070w
[22] J. Y. Song and B. S. Kim, “Biological Synthesis of Bimetallic Au/Ag Nanoparticles Using Persimmon (Diopyros Kaki) Leaf Extract,” Korean Journal of Chemical Engineering, Vol. 25, No. 4, 2008, pp. 808-811. doi:10.1007/s11814-008-0133-z
[23] M. Sathishkumar, K. Sneha, S. W. Won, C. W. Cho, S. Kim, Y. S. Yun, “Cinnamon Zeylanicum Bark Extract and Powder Mediated Green Synthesis of Nano-Crystalline Silver Particles and Its Bactericidal Activity,” Colloids and Surfaces B: Biointerfaces, Vol. 73, No. 2, 2009, pp. 332-338. doi:10.1016/j.colsurfb.2009.06.005
[24] S. A. Babu and H. G. Prabu, “Synthesis of AgNPs Using the Extract of Calotropis Procera Flower at Room Temperature,” Materials Letters, Vol. 65, No. 11, 2011, pp. 1675-1677. doi:10.1016/j.matlet.2011.02.071
[25] S. Vivekanandhan, M. Misra and A. K. Mohanty, “Biological Synthesis of Silver Nanoparticles Using Glycine Max (Soybean) Leaf Extract: An Investigation on Different Soybean Varieties”, Journal of Nanoscience and Nanotechnology, Vol. 9, No. 12, 2009, pp. 6828-6833. doi:10.1166/jnn.2009.2201
[26] L. Christensen, S. Vivekanandhan, M. Misra and A. K. Mohanty, “Biosynthesis of Silver Nanoparticles Using Murraya Koenigii Leaf: An Investigation on the Effect of Broth Concentration in Reduction Mechanism and Particle Size,” Advanced Materials Letters, Vol. 2, No. 3, 2011, pp. 163-167. doi:10.5185/amlett.2011.4256
[27] S. S. Shankar, A. Rai, A. Ahmad and M. Sastry, “Rapid Synthesis of Au, Ag and Bimetallic Au Core—Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth,” Journal of Colloid and Interface Science, Vol. 275. No. 2, 2004, pp. 496-502. doi:10.1016/j.jcis.2004.03.003
[28] D. Philip, “Mangifera Indica Leaf-Assisted Biosynthesis of Well-Dispersed Silver Nanoparticles,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 78, No. 1, 2011, pp. 327-331. doi:10.1016/j.saa.2010.10.015
[29] K. B. Narayanan and N. Sakthivel, “Phytosynthesis of Gold Nanoparticles Using Leaf Extract of Coleus Amboinicus Lour,” Materials Characterization, Vol. 61, No. 11, 2010, pp. 1232-1238. doi:10.1016/j.matchar.2010.08.003
[30] P. R. Kumar, S. Vivekanandhan, M. Misra, A. K. Mohanty and N. Satyanarayana, “Soybean (Glycine max) Leaf Extract Based Green Synthesis of Palladium Nanoparticles,” Journal of Biomaterials and Nanobiotechnology, Vol. 3, No. 1, 2012, pp. 14-19. doi:10.4236/jbnb.2011
[31] M. Rai, A. Yadav and A. Cade, “Current Trends in Phytosynthesis of Metal Nanoparticles,” Critical Reviews in Biotechnology, Vol. 28, No. 4, 2008, pp. 277-284. doi:10.1080/07388550802368903
[32] S. Iravani, “Green Synthesis of Metal Nanoparticles Using Plants,” Green Chemistry, Vol. 13, No. 10, 2011, pp. 2638-2650. doi:10.1039/c1gc15386b
[33] S. Vivekanandhan, D. Tang, M. Misra and A. K. Mohanty, “Novel Glycine Max (Soybean) Leaf Extract Based Biological Process for the Functionalization of Carbon Nanotubes with Silver Nanoparticles,” Nanoscience and Nanotechnology Letters, Vol. 2, No. 3, 2010, pp. 240-243. doi:10.1166/nnl.2010.1087
[34] S. Vivekanandhan, M. Venkateswarlu, D. Carnahan, M. Misra, A. K. Mohanty and N. Satyanarayana, “Functionalization of Single-Walled Carbon Nanotubes with Silver Nanoparticles Using Tecomastans Leaf Extract,” Physica E, Vol. 44, No. 7-8, 2012, pp. 1725-1729. doi:10.1016/j.physe.2011.10.013

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.