Evaluation of the Kinetic Change of the Immunogenicity of Dengue-2 DNA Vaccine in Mice Administered by Different Administration Routes


A plasmid DNA vaccine is able to induce both humoral and cellular immune responses; however, the kinetic change of the Th1/Th2 response, antibody avidity, cytokine secretion, and neutralization activity after different priming and boosting strategies have not been evaluated. A plasmid DNA, designated pCBD2 and previously shown to efficiently induce an immune response very similar to that by a wild type virus, was evaluated kinetically in this study. Our results suggest that a DNA vaccine delivered by the gene gun (gg) route produced higher and longer DENV-2-specific antibody titers than those induced through the intramuscular (im) route. Although the gg group induced a Th2 response and im delivery induced a Th1 response, priming by gg delivery, followed by a boosting by im delivery, did not shift the immune response from a Th2 to Th1 response. Furthermore, the antibody avidity (AI) measured by ELISA demonstrated a gradual increase of AI from low (AI range from 6.8% - 9.6%) on day 42 to high (AI value > 30) on day 119 in all but the gene-gun immunization group, in which an AI value of 23 was observed. Although there was lower avidity in the gg group, the mice sera from all three groups of mice demonstrated significant neutralization activity. This is the first report about the kinetics of immunogenicity of a DNA vaccine through different administration strategies, which suggests that gene gun delivery of a DNA vaccine can induce an immune response containing both neutralizing and nonneutralizing antibodies at high titers important for neutralization.

Share and Cite:

H. Wu, W. Shen, G. J. Chang, S. Chuang, C. Kao and D. Chao, "Evaluation of the Kinetic Change of the Immunogenicity of Dengue-2 DNA Vaccine in Mice Administered by Different Administration Routes," World Journal of Vaccines, Vol. 2 No. 2, 2012, pp. 61-72. doi: 10.4236/wjv.2012.22009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Kyle and E. Harris, “Global Spread and Persistence of Dengue,” Annual Review of Microbiology, Vol. 62, 2008, pp. 71-92. doi:10.1146/annurev.micro.62.081307.163005
[2] S. B. Halstead, “Dengue,” Lancet, Vol. 370, No. 9599, 2007, pp. 1644-1652. doi:10.1016/S0140-6736(07)61687-0
[3] I. Kautner, M. J. Robinson and U. Kuhnle, “Dengue Virus Infection: Epidemiology, Pathogenesis, Clinical Presentation, Diagnosis, and Prevention,” Journal of Pediatrics, Vol. 131, No. 4, 1997, pp. 516-524. doi:10.1016/S0022-3476(97)70054-4
[4] W. J. H. McBride and H. Bielefeldr-Ohmann, “Dengue Viral Infections; Pathogenesis and Epidemiology,” Microbes and Infection, Vol. 2, No. 9, 2000, pp. 1041-1050. doi:10.1016/S1286-4579(00)01258-2
[5] S. S. Whitehead, J. E. Blaney, A. P. Durbin, B. R. Murphy, “Prospects for a Dengue Virus Vaccine,” Nature Reviews Microbiology, Vol. 5, No. 7, 2007, pp. 518-528. doi:10.1038/nrmicro1690
[6] B. D. Lindenbach and C. M. Rice, “Flaviviridae: The Viruses and Their Replication, In: D. M. Knipe and P. M. Howley, Eds., Fields’ Virology, 4th Edidion, Lippincott Williams & Wilkins, Philadelphia, 2001, pp. 991-1110.
[7] S. Mukhopadhyay, R. J. Kuhn and M. G. Rossmann, “A Structural Perspective of the Flavivirus Life Cycle,” Nature Reviews Microbiology, Vol. 3, No. 1, 2005, pp. 13-22. doi:10.1038/nrmicro1067
[8] S. J. Seligman and D. J. Bucher, “The Importance of Being Outer: Consequences of the Distinction between the Outer and Inner Surfaces of Flavivirus Glycoprotein E,” Trends in Microbiology, Vol. 11, No. 3, 2003, pp. 108-110. doi:10.1016/S0966-842X(03)00005-2
[9] J. T. Roehrig, “Antigenic Structure of Flavivirus Proteins,” Advances in Virus Research, Vol. 59, 2003, pp. 141-175. doi:10.1016/S0065-3527(03)59005-4
[10] G. J. Chang, A. R. Hunt, D. A. Holmes, T. Springfield, T.-S. Chiueh, J. T. Roehrig and D. J. Gubler, “Enhancing Biosynthesis and Secretion of Premembrane and envelope Proteins by the Chimeric Plasmid of Dengue Type 2 and Japanese Encephalitis Virus,” Virology, Vol. 306, No. 1, 2003, pp. 170-180. doi:10.1016/S0042-6822(02)00028-4
[11] W. D. Crill and J. T. Roehrig, “Monoclonal Antibodies that Bind to Domain III of Dengue Virus E Glycoprotein Are the Most Efficient Blockers of Virus Adsorption to Vero Cells,” Journal of Virology, Vol. 75, No. 16, 2001, pp. 7769-7773. doi:10.1128/JVI.75.16.7769-7773.2001
[12] J. Schmitz, J. Roehrig, A. Barrett and J. Hombach, “Next Generation Dengue Vaccines: A Review of Candidates in Preclinical Development,” Vaccine, Vol. 29, No. 42, 2011, pp. 7276-7284. doi:10.1016/j.vaccine.2011.07.017
[13] D. P. Webster, J. Farrar and S. Rowland-Jones, “Progress towards a Dengue Vaccine,” Lancet Infectious Diseases, Vol. 9, No. 11, 2009, pp. 678-687. doi:10.1016/S1473-3099(09)70254-3
[14] B. Guy and J. W. Almond, “Towards a Dengue Vaccine: Progress to Date and Remaining Challenges,” Comparative Immunology, Microbiology and Infectious Diseases, Vol. 31, No. 2-3, 2008, pp. 239-252. doi:10.1016/j.cimid.2007.07.011
[15] K. V. Pugachev, F. Guirakhoo and T. P. Monath, “New Developments in Flavivirus Vaccines with Special Attention to Yellow Fever,” Current Opinion in Infectious Diseases, Vol. 18, No. 5, 2005, pp. 387-394. doi:10.1097/01.qco.0000178823.28585.ad
[16] R. Putnak, K. Porter and C. Schmaljohn, “DNA Vaccines for Flaviviruses,” Advances in Virus Research, Vol. 61, 2003, pp. 445-468. doi:10.1016/S0065-3527(03)61012-2
[17] S. Koyama, C. Coban, T. Aoshi, T. Horii, S. Akira and K. J. Ishii, “Innate Immune Control of Nucleic Acid-Based Vaccine Immunogenicity,” Expert Review of Vaccines, Vol. 8, No. 8, 2009, pp. 1099-1107. doi:10.1586/erv.09.57
[18] T. Kochel, S. J. Wu, K. Raviprakash, P. Hobart, S. Hoffman, K. Porter and C. Hayes, “Inoculation of Plasmids Expressing the Dengue-2 Envelope Gene Elicit Neutralizing Antibodies in Mice,” Vaccine, Vol. 15, No. 5, 1997, pp. 547-552. doi:10.1016/S0264-410X(97)00215-6
[19] K. R. Porter, T. J. Kochel, S. J. Wu, K. Raviprakash, I. Phillips and C. G. Hayes, “Protective Efficacy of a Denngue 2 DNA Vaccine in Mice and the Effect of CpG Immuno-Stimulatory Motifs on Antibody Responses,” Archives of Virology, Vol. 143, No. 5, 1998, pp. 997-1003. doi:10.1007/s007050050348
[20] K. Raviprakash, T. J. Kochel, D. Ewing, M. Simmons, I. Phillips, C. G. Hayes and K. R. Porter, “Immunogenicity of Dengue Virus Type 1 DNA Vaccines Expressing Truncated and Full Length Envelope Protein,” Vaccine, Vol. 18, No. 22, 2000, pp. 2426-2434. doi:10.1016/S0264-410X(99)00570-8
[21] E. Konishi, M. Yamaoka, I. Kurane and P. W. Mason, “A DNA Vaccine Expressing Dengue Type 2 Virus Premembrane and Envelope Genes Induces Neutralizing Antibody and Memory B Cells in Mice,” Vaccine, Vol. 18, No. 1112, 2000, pp. 1133-1139. doi:10.1016/S0264-410X(99)00376-X
[22] T. J. Kochel, K. Raviprakash, C. G. Hayes, D. M. Watts, K. L. Russell, A. S Gozalo, I. A. Phillips, D. F. Ewing, G. S. Murphy and K. R. Porter, “A Dengue Virus Serotype-1 DNA Vaccine Induces Virus Neutralizing Antibodies and Provides Protection from Viral Challenge in Aotus Monkeys,” Vaccine, Vol. 18, No. 27, 2000, pp. 3166-3173. doi:10.1016/S0264-410X(00)00105-5
[23] G. J. Chang, B. S. Davis, A. R. Hunt, D. A. Holmes and G. Kuno, “Flavivirus DNA vaccines: Current Status and Potential,” Annals of the New York Academy of Sciences, Vol. 951, 2001, pp. 272-285. doi:10.1111/j.1749-6632.2001.tb02703.x
[24] G. J. Chang, A. R. Hunt and B. S. Davis, “A Single Intramuscular Injection of Recombinant Plasmid DNA Induces Protective Immunity and Prevents Japanese Encephalitis in Mice,” Journal of Virology, Vol. 74, No. 9, 2000, pp. 4244-4252. doi:10.1128/JVI.74.9.4244-4252.2000
[25] M. Simmons, K. R. Porter, C G. Hayes, D. W. Vaughn and R. Putnak, “Characterization of Antibody Responses to Combinations of a Dengue Virus Type 2 DNA Vaccine and Two Dengue Virus Type 2 Protein Vaccines in Rhesus Macaques,” Journal of Virology, Vol. 80, No. 19, 2006, pp. 9577-9585. doi:10.1128/JVI.00284-06
[26] J. H. Aberle, S. W. Aberle, S. L. Allison, K. Stiasny, M. Ecker, C. W. Mandl, R. Berger and F. X. Heinz, “A DNA immunization Model Study with Constructs Expressing the Tick-Borne Encephalitis Virus Envelope Protein E in Different Physical Forms,” Journal of Immunology, Vol. 163, No. 12, 1999, pp. 6756-6761.
[27] R. Kaur, G. Sachdeva and S. Vrati, “Plasmid DNA Immunization against Japanese Encephalitis Virus: Immunogenicity of Membrane-Anchored and Secretory Envelope Protein,” Journal of Infectious Diseases, Vol. 185, No. 1, 2002, pp. 1-12. doi:10.1086/338015
[28] C. M. Boyle and H. L. Robinson, “Basic Mechanisms of DNA-Raised Antibody Responses to Intramuscular and Gene Gun Immunizations,” DNA and Cell Biology, Vol. 19, No. 3, 2000, pp. 157-165. doi:10.1089/104454900314546
[29] A. E. Oran and H. L. Robinson, “DNA Vaccines, Combining Form of Antigen and Method of Delivery to Raise a Spectrum of IFN-r an dIL-4-Producing CD4+ and CD8+ T Cells,” Journal of Immunology, Vol. 171, 1999, pp. 1999-2005.
[30] Y. Chow, W. Huang, W. Chi, Y. Chu and M. Tao, “Improvement of Hepatitis B Virus DNA Vaccines by Plasmids Coexpressing Hepatitis B Surface Antigen and Interleukin-2,” Journal of Virology, Vol. 71, No. 1, 1997, pp. 169-178.
[31] Y. Chow, B. Chiang, Y. Lee, W. Chi, W. Lin, Y. Chen and M. Tao, “Development of Th1 and Th2 Populations and the Nature of Immune Responses to Hepatitis B Virus DNA Vaccines Can Be Modulated by Codelivery of Various Cytokine Genes,” Journal of Immunology, Vol. 160, No. 3, 1998, pp. 1320-1329.
[32] J. Sin, J. Kim, R. Arnold, K. Shroff, D. McCallus, C. Pachuk, S. McElhiney, M. Wolf, S. Pompa-de Bruin, T. Higgins, et al., “IL-12 Gene as a DNA Vaccine Adjuvant in a Herpes Mouse Model: IL-12 Enhances Th1-Type CD4+ T Cell-Mediated Protective Immunity against Herpes Simplex Virus-2 Challenge,” Journal of Immunology, Vol. 162, No. 5, 1999, pp. 2912-2921.
[33] J. E. Martin, T. C. Pierson, S. Hubka, S. Rucker, I. J. Gordon, M. E. Enama, C. A. Andrews, Q. Xu, B. S. Davis, M. Nason, et al., “A West Nile Virus DNA Vaccine Induces Neutralizing Antibody in Healthy Adults During a Phase 1 Clinical Trial,” Journal of Infectious Diseases, Vol. 196, No. 12, 2007, pp. 1732-1740. doi:10.1086/523650
[34] P. Russell, A Nisalak, P. Sukhavachana and S. Vivona, “A Plaque Reduction Test for Dengue Virus Neutralizing Antibodies,” Journal of Immunology, Vol. 99, No. 2, 1967, pp. 285-290.
[35] D. E. Purdy, A. J. Noga and G. J. Chang, “Noninfectious Recombinant Antigen for Detection of St. Louis Encephalitis Virus-Specific Antibodies in Serum by EnzymeLinked Immunosorbent Assay,” Journal of Clinical Microbiology, Vol. 42, No. 10, 2004, pp. 4709-4717. doi:10.1128/JCM.42.10.4709-4717.2004
[36] J. H. Aberle, S. W. Aberle, S. L. Allison, K. Stiasny, M. Ecker, C. W. Mandl, R. Berger and F. Heinz, “A DNA Immunization Model Study with Constructs Expressing the Tick-Borne Encephalitis Virus Envelope Protein E in Different Physical Forms,” Journal of Immunology, Vol. 163, No. 12, 1999, pp. 6756-6761.
[37] M. Narita, S. Yamada, Y. Matsuzono, O. Itakura, T. Togashi and H. Kikuta, “Immunoglobulin G Avidity Testing in Serum and Cerebrospinal Fluid for Analysis of Measles Virus Infection,” Clinical and Diagnostic Laboratory Immunology, Vol. 3, No. 2, 1996, pp. 211-215.
[38] M. Narita, Y. Matsuzono, Y. Takekoshi, S. Yamada, O. Itakura and M. Kubota, “Analysis of Mumps Vaccine Failure by Means of Avidity Testing for Mumps VirusSpecific Immunoglobulin-G,” Clinical and Diagnostic Laboratory Immunology, Vol. 5, No. 6, 1998, pp. 799-803.
[39] J. Kyle, S. Balsitis, L. Zhang, P. Beatty and E. Harris, “Antibodies Play a Greater Role than Immune Cells in Heterologous Protection against Secondary Dengue Virus Infection in a Mouse Model,” Virology, Vol. 380, No. 2, 2008, pp. 296-303. doi:10.1016/j.virol.2008.08.008
[40] T. Endy, A. Nisalak, S. Chunsuttitwat, D. W. Vaughn, S. Green and F. A. Ennis, “Relationship of Preexisting Dengue Virus (DV) Neutralizing Antibody Levels to Viremia and Severity of Disease in a Prospective Cohort Study of DV Infection in Thailand,” Journal of Infectious Diseases, Vol. 189, No. 6, 2004, pp. 990-1000. doi:10.1086/382280
[41] W. Zhu, C. Thomas and P. Sparling, “DNA Immunization of Mice with a Plasmid Encoding Neisseria Gonorrhea PorB Protein by Intramuscular Injection and Epidermal Particle Bombardment,” Vaccine, Vol. 22, No. 5-6, 2004, pp. 660-669. doi:10.1016/j.vaccine.2003.08.036
[42] C. H. Pan, H. W. Chen, H. W. Huang and M. H. Tao, “Protective Mechanisms Induced by a Japanese Encephalitis Virus DNA Vaccine: Requirement for Antibody but not CD8+ Cytotoxic T-Cell Response,” Journal of Virology, Vol. 75, No. 23, 2001, pp. 11457-11463. doi:10.1128/JVI.75.23.11457-11463.2001
[43] A. M. Barfoed, B. Kristensen, T. Dannemann-Jensen, B. Viuff, A. Botner, S. Kamstrup and M. B. Moller, “Influence of Routes and Administration Parameters on Antibody Response of Pigs Following DNA Vaccination,” Vaccine, Vol. 22, No. 11-22, 2004, pp. 1395-1405. doi:10.1016/j.vaccine.2003.10.032
[44] H. L. Robinson and C. Torres, “DNA Vaccines,” Seminars in Immunology, Vol. 9, No. 6, 1997, pp. 271-283. doi:10.1006/smim.1997.0083
[45] M. Chattergoon, T. Robinson, J. Boyer and D. Weiner, “Specific Immune Induction Following DNA-Based Immunization through in Vivo Transfection and Activation of Macrophage/Antigen-Presenting Cells,” Journal of Immunology, Vol. 160, No. 12, 1998, pp. 5707-5718.
[46] A. Porgador, K. Irvine, A. Iwasaki, B. Barber, N. Restifo and R. Germain, “Predominant Role for Directly Transfected Dendritic Cells in Antigen Presentation to CD8+ T Cells after Gene Gun Immunization,” Journal of Experimental Medicine, Vol. 188, No. 6, 1998, pp. 1075-1082. doi:10.1084/jem.188.6.1075
[47] J. Williman, E. Lockhart, L. Slobbe, G. Buchan and M. Baird, “The Use of Th1 Cytokines, IL12 and IL-23, to Modulate The Immune Response Raised to a DNA Vaccine Delivered by Gene Gun,” Vaccine, Vol. 24, No. 21, 2006, pp. 4471-4474. doi:10.1016/j.vaccine.2005.08.011
[48] H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato and H. Sanjo, “A Toll-Like Receptor Recognizes Bacterial DNA,” Nature, Vol. 408, No. 6813, 2000, pp. 740-745. doi:10.1038/35047123
[49] D. Feltquate, S. Heaney, R. Webster and H. Robinson, “Different T Helper Cell Types and Antibody Isotypes Generated by Saline and Gene Gun DNA Immunization,” Journal of Immunology, Vol. 158, No. 5, 1997, pp. 2278-2284.
[50] A. Rothman and F. A. Francis, “Immunopathogenesis of Dengue Hemorrhagic Fever,” Virology, Vol. 257, No. 1, 1999, pp. 1-6. doi:10.1006/viro.1999.9656
[51] G. C. Perng, H.-Y. Lei, Y.-S. Lin and K. Chokephaibulkit, “Dengue Vaccines: Challenge and Confrontation,” World Journal of Vaccines, Vol. 1, No. 4, 2011, pp. 109-130. doi:10.4236/wjv.2011.14012
[52] G. Gregoriadis, A. Bacon, W. Caparros-Wanderley and B. McCormack, “A Role for Liposomes in Genetic Vaccination,” Vaccine, Vol. 20, No. S5, 2002, pp. B1-B9. doi:10.1016/S0264-410X(02)00514-5
[53] C.-C. Lin, M.-C. Yen, C.-M. Lin, S.-S. Huang, H.-J. Yang, N.-H. Chow and M.-D. Lai, “Delivery of Noncarrier Naked DNA Vaccine into the Skin by Supersonic Flow Induces a Polarized T Helper type 1 Immune Response to Cancer,” Journal of Gene Medicine, Vol. 10, No. 6, 2008, pp. 679-689. doi:10.1002/jgm.1183
[54] N. Y. Sardesai and D. B. Weiner, “Electroporation Delivery of DNA Vaccines: Prospects for Success,” Current Opinion in Immunology, Vol. 23, No. 3, 2011, pp. 421-429. doi:10.1016/j.coi.2011.03.008

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.