Zinc and Lead Biosorption by Delftia tsuruhatensis: A Bacterial Strain Resistant to Metals Isolated from Mine Tailings


A bacterial strain capable of Zinc and Lead biosorption was isolated from mine tailings. This strain showed the highest minimum inhibitory concentrations (MIC) of metals among other isolates in metal-resistance tests. Sorption tests were conducted placing 0.015 g of dry biomass in 10 ml of metallic solution at fixed pH. Contact was analyzed at different times (kinetics) and different initial concentrations (isotherm). The biomass was separated by centrifugation and the concentration of non-absorbed metal was determined using atomic absorption spectroscopy. The strain was identified by 16S sequencing as Delftia tsuruhatensis. The order of toxicity of the metals to the bacterium was Zn > Pb > Se > Ni > Cu = Al. Zinc and Lead absorption kinetics were adjusted to the pseudo second order equation (r2 = 0.99), showing that equilibrium was reached at 40 and 20 min, respectively. Maximal absorption of Pb and Zn was 0.216 and 0.207 mmol?g–1, respectively; which can be considered a median magnitude capacity when compared to other biosorbents described in the literature.

Share and Cite:

D. Bautista-Hernández, L. Ramírez-Burgos, E. Duran-Páramo and L. Fernández-Linares, "Zinc and Lead Biosorption by Delftia tsuruhatensis: A Bacterial Strain Resistant to Metals Isolated from Mine Tailings," Journal of Water Resource and Protection, Vol. 4 No. 4, 2012, pp. 207-216. doi: 10.4236/jwarp.2012.44023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. B. Bradl, C. Kim, U. Kramar and D. Stüben, “Inter- actions of Heavy Metals,” In: H. B. Bradl, Ed., Heavy Metals in the Environment: Origin, Interaction and Re- mediation, Interface Science and Technology, Elsevier Ltd., 2005, Vol. 6, pp. 28-164.
[2] R. H. Vieira and B. Volesky, “Biosorption: A Solution to pollution?” International Mycrobiology, Vol. 3, No. 1, 2000, pp. 17-24.
[3] K. Vijayaraghavan and Y. S. Yun, “Bacterial Biosorbents and Biosorption,” Biotechology Advances, Vol. 26, No. 3, 2008, pp. 266-291. doi:10.1016/j.biotechadv.2008.02.002
[4] K. Chojnacka, “Biosorption and Bioaccumulation—The Prospects for Practical Applications” Environment Inter- national, Vol. 36, No. 3, 2010, 299-307. doi:10.1016/j.envint.2009.12.001
[5] B. Volesky, “Sorption and Biosorption,” BV Sorbex Inc., Montreal-St. Lambert, 2003.
[6] S. S. Ahluwalia and D. Goyal, “Microbial and Plant De- rived Biomass for Removal of Heavy Metals from Waste- water,” Bioresource Technology, Vol. 98, No. 12, 2007, pp. 2243-2257.
[7] M. I. Ansari and A. Malik, “Biosorption of Nickel and Cadmium by Metal Resistant Bacterial Isolates from Ag- ricultural Soil Irrigated with Industrial Wastewater,” Bio- resource Technology, Vol. 98, No. 16, 2007, pp. 3149- 3153. doi:10.1016/j.biortech.2006.10.008
[8] A. I. Zouboulis, M. X. Loukidou and K. A. Matis, “Biosorption of Toxic Metals from Aqueous Solutions by Bacteria Strains Isolated from Metal-Polluted Soils,” Process Biochemistry, Vol. 39, No. 8, 2004, pp. 909-916. doi:10.1016/S0032-9592(03)00200-0
[9] H.-L. Liu, B.-Y. Chen, Y.-W. Lan and Y.-C. Cheng, “Bio- sorption of Zn(II) and Cu(II) by the indigenous Thioba- cillus thiooxidans,” Chemical Engineering Journal, Vol. 97, No. 2-3, 2004, pp. 195-201. doi:10.1016/S1385-8947(03)00210-9
[10] I. E. Yilmaz, “Metal Tolerance And Biosorption Capacity of Bacillus circulans Strain EB1,” Research in Microbi- ology, Vol. 154, No. 6, 2003, pp. 409-415. doi:10.1016/S0923-2508(03)00116-5
[11] Y. S. Ho and G. McKay, “Pseudo-Second Order Model for Sorption Processes,” Process Biochemistry, Vol. 34, No. 5, 1999, pp. 451-465. doi:10.1016/S0032-9592(98)00112-5
[12] A. Hiraishi, Y. K. Shin, Y. Ueda and J. Sugiyama, “Auto- mated Sequencing of PCR Amplified 16S rDNA on Hy- drolink Gels,” Journal of Microbiology Methods, Vol. 19, No. 2, 1994, pp. 145-154. doi:10.1016/0167-7012(94)90046-9
[13] T. Shigematsu, K. Yumihara, Y. Ueda, M. Numaguchi, S. Morimur and K. Kida, “Delftia tsuruhatensis sp. nov., a Terephthalate-Assimilating Bacterium Isolated from Ac- tivated Sludge,” International Journal of Systematic and Evolutionary Microbiology, Vol. 53, 2003, pp. 1479-1483. doi:10.1099/ijs.0.02285-0
[14] A. Hassen, N. Saidi, Cherif and A. Boudabous, “Effects of Heavy Metals on Pseudomonas aeruginosa and Bacil- lus thuringiensis,” Bioresource Technology, Vol. 65, No. 1-2, 1998, pp. 73-82. doi:10.1016/S0960-8524(98)00011-X
[15] W. Barabasz, B. Hetmanska and P. Tomasik, “The Metal- Metal Interactions in Biological Systems. Part I. Esche- richia coli,” Water, Air and Soil Pollution, Vol. 52, No. 3-4, 1990, pp. 337-375. doi:10.1007/BF00229442
[16] J. P. Chandy, “Heavy Metal Tolerance in Chromogenic and Non-Chromogenic Marine Bacteria from Arabian Gulf,” Environmental Monitoring and Assessment, Vol. 59, No. 3, 1999, pp. 321-330. doi:10.1023/A:1006173722510
[17] G. Haferburg, M. Reinicke, D. Merten, G. Buchel and E. Kothe, “Microbes Adapted to Acidic Mine Drainage as Source for Strain Active in Retention of Aluminum or Uranium,” Journal of Geochemical Exploration, Vol. 92, No. 2-3, 2007, pp. 196-204. doi:10.1016/j.gexplo.2006.08.011
[18] A. Hernández, P. R. Mellado and L. J. Martínez, “Metal Accumulation and Vanadium-Induced Multidrug Resis- tance by Environmental Isolates of Escherichia harmannii and Enterobacter cloacae,” Applied and Environ- mental Microbiology, Vol. 64, No. 11, 1998, pp. 4317- 4320.
[19] M. R. Timberley and L. P. Ian, “Microorganisms and Metal Pollutants,” In: R. M. Maier, L. P. Ian, and P. G. Charles, Eds., Environmental Microbiology, Academic Press, Cambridge, 2000, pp. 403-423.
[20] A. S. Luna, A. C. Da Costa, C. A. Henriques and M. H. Herbst, “Electron Paramagnetic Resonance and Atomic Absorption Spectrometry as Tools For the Investigation of Cu (II) Biosorption by Sargassum filipendula,” Hydro- metallurgy, Vol. 86, No. 1-2, 2007, pp. 105-113. doi:10.1016/j.hydromet.2006.11.008
[21] S. Karthikeyan, R. Balasubramanian and C. S. P. Iyer, “Evaluation of the marine Algae Ulva fasciata and Sargassum sp. for the Biosorption of Cu(II) from Aqueous Solution,” Bioresource Technology, Vol. 98, No. 2, 2007, pp. 452-455. doi:10.1016/j.biortech.2006.01.010
[22] P. Puranik and K. M. Paknikar, “Biosorption of Lead and Zinc from solutions Using Streptoverticillum cinnamoneum Waste Biomass,” Journal of Biotechnology, Vol. 55, No. 2, 1997, pp. 113-124. doi:10.1016/S0168-1656(97)00067-9
[23] P. R. Puranik, J. M. Modak and K. M. Paknikar, “A Comparative Study of Mass Transfer Kinetics of Metal Biosorption by Microbial Biomass,” Hydrometallurgy, Vol. 52, 1999, pp. 189-197.
[24] P. Salehi, B. Asghari and F. Mohammadi, “Biosorption of Ni(II), Cu(II) and Pb(II) by Punica geranatum from Aqueous Solutions,” Journal of Water Resource and Protection, Vol. 2, No. 8, 2010, pp. 701-705. doi:10.4236/jwarp.2010.28080
[25] A. H. Hawari and C. N. Mulligan, “Biosorption of Lead(II), Cadmium(II), Copper(II) and Nickel(II) by Anaerobic Granular Biomass,” Bioresource Technology, Vol. 97, No. 4, 2006, pp. 692-700. doi:10.1016/j.biortech.2005.03.033
[26] E. Fourest and J. C. Roux, “Heavy Metal Biosorption by fungal Mycelial Byproducts: Mechanism and Influence of pH,” Applied Microbiology and Biotechnology, Vol. 37, No. 3, 1992, pp. 399-403. doi:10.1007/BF00211001
[27] S. Tunali, A. Cabuk and T. Akar, “Removal of Lead and Copper Ions from Aqueous Solutions by Bacterial Strain Isolated from Soil,” Chemical Engineering Journal, Vol. 115, No. 3, 2006, pp. 203-211. doi:10.1016/j.cej.2005.09.023
[28] S. Mustafiz, A. Basu and M. R. Islam, “A Novel Method for Heavy Metals Removal,” Energy Resources, Vol. 24, No. 11, 2002, pp. 1043-1050. doi:10.1080/00908310290086905
[29] G. Ozdemir, N. Ceyhan, T. Ozturk, F. Akirmak and T. Cosar, “Biosorption of Chromium(VI), Cadmium(II) and Copper(II) by Pantoea sp. TEM 18,” Chemical Engi- neering Journal, Vol. 102, No. 3, 2004, pp. 249-253. doi:10.1016/j.cej.2004.01.032
[30] G. Ozdemir and S. H. Baysal, “Chromium and Aluminum Biosorption on Chryseomonas luteola TEM 05,” Applied Microbiology and Biotechnology, Vol. 64, No. 4, 2004, pp. 599-603. doi:10.1007/s00253-003-1479-0
[31] M. Tsezos, E. Remoudaki and Angelatau, “A Systematic Study on Equilibrium and Kinetics of Biosorptive Accu- mulation: The Case of Ag and Ni,” International Biode- terioration and Biodegradation, Vol. 35, No. 1-3, 1995, 129-153. doi:10.1016/0964-8305(95)00049-B
[32] Y. Liu, H. Xu, S. F. Yang and J. H. Tay, “A general Model for Biosorption of Cd2+, Cu2+, and Zn2+ by Aerobic Granules,” Journal of Biotechnology, Vol. 102, No. 3, 2003, pp. 233-239. doi:10.1016/S0168-1656(03)00030-0
[33] A. Esposito, F. Pagnanelli, A. Lodi, C. Solisio and F. Veglió, “Biosorption of Heavy Metals by Sphaerotilus natans: An Equilibrium Study at Different pH and Bio- mass Concentrations,” Hydrometallurgy, Vol. 60, No. 2, 2001, pp. 129-141.
[34] C. Can and W. Jianlong, “Influence of Metal Ionic Char- acteristic on Their Biosorption Capacity by Saccharomy- ces cerevisiae,” Applied Microbiology and Biotechnology, Vol. 74, No. 4, 2007, 911-917. doi:10.1007/s00253-006-0739-1
[35] K. Chandrasekhar, C. T. Kamala, N. S. Chary and Y. An- januyuku, “Removal of Heavy Metal Using Plant Bio- mass with Reference To Environmental Control,” Inter- national Journal of Mineral Process, 2003, Vol. 68, No. 1-2, pp. 37-45. doi:10.1016/S0301-7516(02)00047-9
[36] J. M. Brady and J. M. Tobin, “Binding of Hard and Soft Metals Ions to Rhizopus arrhizus Biomass,” Enzyme and Microbial Technology, Vol. 17, No. 9, 1995, pp. 791-796. doi:10.1016/0141-0229(95)00142-R
[37] J. T. Matheikal and Q. Yu, “Biosorption of Lead(II) and Copper(II) from Aqueous Solutions by Pre-Treated Bio- mass of Australian Marine Algae,” Bioresource Technol- ogy, Vol. 69, No. 3, 1999, pp. 223-229. doi:10.1016/S0960-8524(98)00196-5
[38] W. Lo, H. Chua, K. H. Lam and S. P. Bi, “A Comparative Investigation on the Biosorption of Lead by Filamentous Fungal Biomass,” Chemosphere, Vol. 39, No. 15, 1999, pp. 2723-2736. doi:10.1016/S0045-6535(99)00206-4
[39] S. B. Choi and Y.-S. Yun, “Lead Biosorption by Waste Biomass of Corynebacterium glutamicum Generated from Lysine Fermentation Process,” Biotechnology Letters, Vol. 26, No. 4, 2004, pp. 331-336. doi:10.1023/B:BILE.0000015453.20708.fc
[40] H. Salehizadeh and S. A. Shojaosadati, “Removal of Me- tal Ions from Aqueous Solutions by Polysaccharide Pro- duced from Bacillus firmus,” Water Research, Vol. 37, No. 17, 2003, 4231-4235. doi:10.1016/S0043-1354(03)00418-4
[41] Z. R. Holan and B. Volesky, “Biosorption of Lead and Nickel by Biomass of Marine Algae,” Biotechnology and Bioengineering, Vol. 43, No. 11, 1994, pp. 819-825. doi:10.1002/bit.260431102
[42] B. Volesky, “Removal of Heavy Metals by Biosorption,” In: M. R. Ladisch and A. Bose, Eds., Harnessing Biotech- nology for the 21st Century, American Chemical Society, Washington DC, 1992, pp. 462-466.
[43] B. Wehreim and M. Wettern, “Biosorption of Cadmium, Copper and Lead by Isolated Mother Cell Wall and Whole Cells of Chlorella fusca,” Applied Microbiology and Biotechnology, Vol. 41, No. 6, 1994, pp. 331-343. doi:10.1007/BF00167291
[44] A. Selatnia, A. Boukazoula, N. Kechid, M. Z. Bakhti, A. Chergi and Y. Kerchich, “Biosorption of Lead(II) from Aqueous Solution by a Bacterial Dead Streptomyces ri- mosus biomass,” Biochemical Engineering Journal, Vol. 19, No. 2, 2004, pp. 127-135. doi:10.1016/j.bej.2003.12.007
[45] F. Veglio, F. Beolchini and A. Gasbarro, “Biosorption of Toxic Metals: An Equilibrium Study Using Free Cells of Arthrobacter sp.,” Process Biochemistry, Vol. 32, No. 2, 1997, pp. 99-105. doi:10.1016/S0032-9592(96)00047-7
[46] A. B. Ariff, M. Mel, M. A. Hasan and M. I. A. Karim, “The Kinetics and Mechanism of Lead(II) Biosorption by Powderized Rhizopus oligosporum,” World Journal of Mi- crobiology and Biotechnology, Vol. 15, No. 2, 1999, pp. 291-298. doi:10.1023/A:1008995026987
[47] H. Niu, X. S. Xiu, J. H. Wang and B. Volesky, “Removal of Lead from Aqueous Solution by Penicillum Biomass,” Biotechnology and Bioengineering, Vol. 42, No. 6, 1993, pp. 785-787. doi:10.1002/bit.260420615
[48] A. Kapoor and T. Viraraghavan, “Fungal Biosorption— An Alternative Treatment Option for Heavy Metal Bear- ing Wastewater: A Review,” Bioresource Technology, Vol. 53, No. 3, 1995, pp. 195-206. doi:10.1016/0960-8524(95)00072-M
[49] N. Friis and P. Myers-Keith, “Biosorption of Uranium and Lead by Streptomyces longwoodensis,” Biotechnol- ogy and Bioengineering, Vol. 28, No. 1, 1986, pp. 21-28. doi:10.1002/bit.260280105
[50] D. Sanyahumbi, J. R. Duncan, M. Zhao and R. Vanhile, “Removal of Lead from Solutions by the Non-Viable Biomass of the Water Fern Azolla filiculoides,” Biotechnology Letters, Vol. 20, No. 8, 1998, pp. 745-747. doi:10.1023/A:1005386703592
[51] Y. Sag and T. Kutsal, “Fully Competitive Biosorption of Chromium (VI) Iron (III) Ions from Binary Metal Mix- tures by R. arrhizus: Use of the Competitive Langmuir Model,” Process Biochemistry, Vol. 31, No. 6, 1996, pp. 573-585. doi:10.1016/S0032-9592(96)00003-9
[52] J. S. Chang, R. Law and C. Chang, “Biosorption of Lead, Copper and Cadmium by Biomass of Pseudomonas aeru- ginosa PU21,” Water Research, Vol. 31, No. 7 1997, pp. 1651-1658. doi:10.1016/S0043-1354(97)00008-0
[53] A. Vecchio, C. Finoli, D. Di Simine and V. Andreoni, “Heavy Metal Biosorption by Bacterial Cells Fresenius,” Journal of Analytical Chemistry, Vol. 361, No. 4, 1998, pp. 338-342. doi:10.1007/s002160050899
[54] D. H. Cho and E. Y. Kim, “Characterization of Pb2+ Bio- sorption from Aqueous Solution by Rhodotorula gluti- nis,” Bioprocess Biosystem Engineering, Vol. 25, No. 5, 2003, pp. 271-277. doi:10.1007/s00449-002-0315-8
[55] J. H. Suh, J. W. Yun and D. S. Kim, “Comparison of Pb2+ Accumulation Characteristics between Live And Dead Cells of Saccharomyces cerevisiae and Aurebasidium pul- lulans,” Biotechnology Letters, Vol. 20, No. 3, 1998, pp. 247-251. doi:10.1023/A:1005373718222
[56] R. Pardo, M. Herguedas, E. Barrado and M. Veja, “Bio- sorptium of Cadmium, Copper, Lead and Zinc by Inactive Biomass of Pseudomonas putida,” Analytical Bioana- lytical Chemistry, Vol. 376, No. 1, 2003, pp. 26-32. doi:10.1007/s00216-003-1843-z
[57] W. B. Lu, J. J. Shi, C. H. Wang and J. S. Chang, “Biosorption of Lead, Copper and Cadmium by an Indigenous Isolate Enterobacter sp. J1 Possessing High Heavy Metal Resistance,” Journal of Hazardous Materials, Vol. 134, No. 1-3, 2006, pp. 80-86. doi:10.1016/j.jhazmat.2005.10.036
[58] L. Zhang, L. Zhao, Y. Yu and C. Chen, “Removal of Lead from Aqueous Solution by Nonliving Rhizopus nigricans,” Water Research, Vol. 32, No. 5, 1998, pp. 1437- 1444. doi:10.1016/S0043-1354(97)00348-5
[59] S. Y. Quek, D. A. J. Wase and C. F. Forster, “The Use of Sago Waste for the Sorption of Lead and Copper,” Water S.A., Vol. 24, No. 3, 1998, pp. 251-256.
[60] O. Keskinkan, M. Z. L. Goksu, M. Basibuyuk and C. F. Forster, “Heavy Metal Adsorption Properties of a Sub- merged Aquatic Plant Ceratophyllum demersum,” Biore- source Technology, Vol. 92, No. 2, 2004, pp. 197-200. doi:10.1016/j.biortech.2003.07.011
[61] K. J. Tiemann, J. L. Gardea-Torresdey, G. Gamez, K. Dok- ken and S. Sias, “Use of X-Ray Adsorption Spectroscopy and Esterification to Investigate Chromium(III) and Nickel(II) Ligand in Alfalfa Biomass,” Environmental Science and Technology, Vol. 33, No. 1, 1999, pp. 150-154. doi:10.1021/es9804722
[62] B. Mattuschka and G. Straube, “Biosorption of Metals by a Waste Biomass,” Journal of Chemical Technology and Biotechnology, Vol. 58, No. 1, 1993, pp. 57-63. doi:10.1002/jctb.280580108
[63] T. J. Beveridge and S. F. Koval, “Binding of Metals to Cell Envelopes of Escherichia coli K-12,” Applied Envi- ronmental Microbiology, Vol. 42, No. 2, 1981, pp. 876- 887.
[64] Y. H. Kim, Y. J. Yoo and H. Y. Lee, “Characteristic of Lead Adsorption by Undaria pinnatifida,” Biotechnology Letters, Vol. 17, No. 3, 1995, pp. 354-350. doi:10.1007/BF01190651
[65] G. Yan and T. Viraraghavan, “Heavy-Metal Removal from Aqueous Solution by Fungus Mucor rouxii,” Water Re- search, Vol. 37, No. 18, 2003, pp. 4486-4496. doi:10.1016/S0043-1354(03)00409-3
[66] Q. Li, S. Wu, G. Liu, X. Liao, X. Deng, D. Sun, Y. Hu and Y. Huang, “Simultaneous Biosorption of Cadmium(II) and Lead(II) Ions by Pretreated Biomass of Phanero- chaete chrysosporium,” Separation and Purification Tech- nology, Vol. 34, No. 1-3, 2004, pp. 135-142. doi:10.1016/S1383-5866(03)00187-4
[67] B. D. Hoyle and T. J. Beveridge, “Metal Binding by the Peptidoglycan Sacculus of Escherichia coli K-12,” Canadian Journal of Microbiology, Vol. 30, No. 2, 1984, pp. 204-211. doi:10.1139/m84-031
[68] U. Soltmann, S. Matys, G. Kieszig, W. Pompe and H. B?ttcher, “Algae-Silica Hybrid Materials for Biosorption of Heavy Metals,” Journal of Water Resource and Pro- tection, Vol. 2, No. 2, 2010, pp. 115-122. doi:10.4236/jwarp.2010.22013
[69] M. Galun, E. Galun, B. Z. Siegel, P. Keller, H. Lehr and S. M. Siegel, ”Removal of Metal Ions from Aqueous So- lution by Penicillum Biomass: Kinetics and Uptake Pa- rameters,” Water Air Soil Pollution, Vol. 33, No. 3-4, 1987, pp. 359-371. doi:10.1007/BF00294204
[70] C. P. Huang, C. P. Huang and A. L. Morehart, “The Re- moval of Cu(II) from Dilute Aqueous Solution by Sac- charomyces cerevisiae,” Water Research, Vol. 24, No. 4, 1990, pp. 433-439. doi:10.1016/0043-1354(90)90225-U
[71] R. Say, A. Denizli and M. Y. Arica, “Biosorption of Cadmium(II), Lead(II) and Copper(II) with the Filamentous fungus Phanerochaete chrysosporium,” Bioresource Tech- nology, Vol. 76, No. 1, 2001, pp. 67-70. doi:10.1016/S0960-8524(00)00071-7
[72] P. Ahuja, R. Gupta and R. K. Saxena, “Zn2+ Biosorption of Oscillatoria anguistissima,” Process Biochemistry, Vol. 34, No. 1, 1999, pp. 77-85. doi:10.1016/S0032-9592(98)00072-7
[73] A. Artola and M. Rigola, “Selection of Optimum Bio- logical Sludge for Zinc Removal from Wastewater by a Biosorption Process,” Biotechnology Letters, Vol. 14, No. 2, 1992, pp. 1199-1204. doi:10.1007/BF01027028
[74] A. Incharoensakdi and P. Kitjaharn, “Zinc Biosorption from Aqueous Solution by a Halotolerant Cyanobacte- rium Aphanothece halophytica,” Current Microbiology, Vol. 45, No. 4, 2002, pp. 261-264. doi:10.1007/s00284-002-3747-0
[75] E. Valdam and S. G. F. Leite, “Biosorption of Cd, Zn, and Cu by Sargassum sp. Waste Biomass,” Bioprocess Engineering, Vol. 22, No. 2, 2000, pp. 171-173. doi:10.1007/PL00009109
[76] N. Mameri, N. Boudries, L. Addour, D. Belhocine, H. Lou- nici, H. Grib and A. Pauss, “Batch Zinc Biosorption by a Bacterial Non-Living Streptomyces rimosus Biomass,” Water Research, Vol. 33, No. 6, 1999, pp. 1347-1354. doi:10.1016/S0043-1354(98)00349-2
[77] P. Solaris, K. A. Zouboulis, Matis and G. A. Stalidis, “Re- moval of Toxic Metals by biosorption onto Non-Living Sewage Sludge,” Separation Science and Technology, Vol. 31, No. 8, 1996, pp. 1075-1092. doi:10.1080/01496399608001335
[78] X. C. Chen, Y. P. Wang, Q. Lin, J. Y. Shi, W. X. Wu and Y. X. Chen, “Biosorption of Copper(II) and Zinc(II) from Aqueous Solution by Pseudomonas putida CZ1,” Col- loids and Surfaces B: Biointerfaces, Vol. 46, No. 2, 2005, pp. 101-107. doi:10.1016/j.colsurfb.2005.10.003
[79] B. Volesky and H. A. May-Phillips, “Biosorption of Heavy Metals by Saccharomyces cerevisiae,” Applied Microbi- ology and Biotechnology, Vol. 42, No. 5, 1995, pp. 797- 806. doi:10.1007/BF00171964
[80] I. Savvaidis, M. N. Hughes and R. K. Poole, “Differential Pulse Polarography: A Method of Directly Measuring Uptake of Metal Ions by Live Bacteria without Separation of Biomass And Medium,” FEMS Microbiology Letters, Vol. 92, No. 2, 1992, pp. 181-186. doi:10.1111/j.1574-6968.1992.tb05256.x
[81] R. J. Celaya, J. A. Noriega, J. H. Yeomans, L. J. Ortega and A. Ruiz-Manri Quex, “Biosorption of Zinc(II) by Theobacillus ferroxidans,” Bioprocess Engineering, Vol. 22, No. 6, 2000, pp. 539-542. doi:10.1007/s004499900106
[82] R. J. McLean, D. Beauchemin, L. Clapham and T. J. Beveridge, “Metal-binding Characteristic of the Gamma- Glutamyl Capsular Polymer of Bacillus licheniformis ATCC 9945,” Applied and Environmental Microbiology, Vol. 56, No. 12, 1990, pp. 3671-3677.
[83] S. R. Shukla and R. S. Pai, “Adsorption of Cu(II), Ni(II) and Zn(II) on Modified Jute Fibres,” Bioresource Technology, Vol. 96, No. 13, 2005, pp. 1430-1438. doi:10.1016/j.biortech.2004.12.010
[84] J. P. S. Cabral, “Selective Binding of Metal Ions to Pseu- domonas syringae Cells,” Microbes, Vol. 71, No. 286, 1992, pp. 47-53.
[85] C. C. Townsley and I. S. Ross, “Copper Uptake by Penicillum spinulosum,” Microbes, Vol. 44, No. 178, 1985, pp. 125-134.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.