[1]
|
Horejsi, V. (2003) The roles of membrane microdomains (rafts) in T cell activation. Immunological Reviews, 191, 148-164. doi:10.1034/j.1600-065X.2003.00001.x
|
[2]
|
Luna, E.J. and Hitt, A.L. (1992) Cytoskeleton-plasma membrane interactions. Science, 258, 955-964. doi:10.1126/science.1439807
|
[3]
|
Zacharias, D.A., Violin, J.D., Newton, A.C. and Tsien, Y.R. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, 296, 913-916. doi:10.1126/science.1068539
|
[4]
|
Sharma, P., Varma, R., Sarasij, R.C., Ira, Gousset, K., Krishnamoorthy, G.G., Rao, M. and Mayor, S. (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell, 116, 577-589. doi:10.1016/S0092-8674(04)00167-9
|
[5]
|
Leksa, V., Godar, S., Schiller, H.B., Fuertbauer, E., Muhammad, A., Slezakova, K., Horejsi, V., Steinlein, P., Weidle, U.H., Binder, B.R. and Stockinger, H. (2005) TGF-beta-induced apoptosis in endothelial cells mediated by M6P/ IGFII-R and mini-plasminogen. Journal of Cell Science, 118, 4577-4586. doi:10.1242/jcs.02587
|
[6]
|
Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature, 387, 569-572. doi:10.1038/42408
|
[7]
|
Rietveld, A. and Simons, K. (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochimica et Biophysica Acta, 1376, 467-479.
|
[8]
|
Lillemeier, B.F., Pfeiffer, J.R., Surviladze, Z., Wilson, B.S. and Davis, M.M. (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 103, 18992-18997. doi:10.1073/pnas.0609009103
|
[9]
|
Smith-Garvin, J.E., Koretzky, G.A. and Jordan, M.S. (2009) T cell activation. Annual Review of Immunology, 27, 591-619. doi:10.1146/annurev.immunol.021908.132706
|
[10]
|
Molnar, E., Dopfer, E.P., Deswal, S. and Schamel, W.W. (2009) Models of antigen receptor activation in the design of vaccines. Current Pharmaceutical Design, 15, 3237- 3248. doi:10.2174/138161209789105216
|
[11]
|
Molnar, E., Deswal, S. and Schamel, W.W. (2010) Preclustered TCR complexes. FEBS Letters, 584, 4832-4837. doi:10.1016/j.febslet.2010.09.004
|
[12]
|
Schamel, W.W., Arechaga, I., Risueno, R.M., van Santen, H.M., Cabezas, P., et al. (2005) Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. The Journal of Experimental Medicine, 202, 493-503. doi:10.1084/jem.20042155
|
[13]
|
Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. and Oliver, J.M. (2001) High resolution mapping of mast cell membranes reveals primary and secondary domains of Fc(epsilon)RI and LAT. The Journal of Cell Biology, 154, 645-658. doi:10.1083/jcb.200104049
|
[14]
|
Lillemeier, B.F., Mortelmaier, M.A., Forstner, M.B., Huppa, J.B., Groves, J.T., et al. (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunology, 11, 90-96. doi:10.1038/ni.1832
|
[15]
|
Sanchez-Lockhart, M. and Miller, J. (2006) Engagement of CD28 outside of the immunological synapse results in up-regulation of IL-2 mRNA stability but not IL-2 transcription. The Journal of Immunology, 176, 4778-4784.
|
[16]
|
Kobayashi, H., Azuma, R. and Yasunaga, T. (2009) Expression of excess receptors and negative feedback control of signal pathways are required for rapid activation and prompt cessation of signal transduction. Cell Communication and Signaling, 7, 3. doi:10.1186/1478-811X-7-3
|
[17]
|
Woolf, P.J. and Linderman, J.J. (2003) Self organization of membrane proteins via dimerization. Biophysical Chemistry, 104, 217-227. doi:10.1016/S0301-4622(02)00369-1
|
[18]
|
Brinkerhoff, C.J., Woold, P.J. and Linderman, J.J. (2004) Monte Carlo simulations of receptor dynamics: insights into cell signaling. Journal of Molecular Histology, 35, 667-677.
|