[1]
|
J. H. Jeans, “The Stability of Spherical Nebulae,” Phi-losophical Transactions of the Royal Society of London, A 199, 1902, pp. 1-53.
|
[2]
|
S. Chandrasekhar, “Hydrodynamics & Hydromagnetic Stability,” Clarendron Press, Oxford, 1961.
|
[3]
|
P. D. Ariel, “The Character of Equilibrium of an Inviscid Infinitely Conducting Fluid of Variable Density in the Presence of a Horizontal Magnetic Field with Hall-Ur-rent,” Journal of Plasma Physics, Vol. 4, 1970, pp. 523-530.
|
[4]
|
G. Bhowmik, “Rayleigh Taylor Instability of a Viscous Hall Plasma with Magnetic Field,” Journal of Plasma Physics, Vol. 7, 1972, pp. 117-132.
|
[5]
|
A. Ali and P. K. Bhatia, “Magnetic Resistivity and Hall Currents Effects on the Stability of a Self-Gravitating Plasma of Varying Density in Variable Magnetic Field,” Astrophysics and Space Science, Vol. 201, 1993, pp. 15-27.
|
[6]
|
M. K. Vyas and R. K. Chhajlani, “Gravitational Instabil-ity of a thermally-conducting Plasma Flowing through a Porous Medium in the Presence of Suspended Particles,” Astrophysics and Space Science, Vol. 149, 1988, pp. 323-342.
|
[7]
|
R. C. Sharma and T. Chand, “Gravitational Instability for Some Astrophysical Systems,” Astrophysics and Space Science, Vol. 183, 1991, pp. 215-224.
|
[8]
|
A. Khan and P. K. Bhatia, “Stability of Two Superposed Viscoelastic Fluid in a Horizontal Magnetic Field,” In-dian Journal of Pure and Applied Mathematics, Vol. 32, 2001, pp. 98-108.
|
[9]
|
S. S. Kumar, “On Gravitational Instability, III,” Publica-tions of the Astronomical Society of Japan, Vol. 13, 1961, pp. 121-124.
|
[10]
|
R. H. Chhajlani and D. S. Vaghela, “Magnetogravitational Stability of Self-Gravitating Plasma with Thermal Conduc-tion and Finite Larmor Radius through Porous Medium,” Astrophysics and Space Science, Vol. 134, 1987, pp. 301- 315.
|
[11]
|
V. Mehta and P. K. Bhatia, “Gravitational Instability of a Rotating Viscous Thermally Conducting plasma,” Con-tributions to Plasma Physics, Vol. 29, 1989, pp. 617-626.
|
[12]
|
T. Padmanabhan, “Statistical Mechanics of Gravitating Systems,” Physics Reports, Vol. 188, 1990, pp. 285-362.
|
[13]
|
A. Taruya and M. Sakagami, “Thermodynamic Properties of Stellar Polytrope,” Physica A, Vol. 318, 2003, pp. 387-413.
|
[14]
|
C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics,” Journal of Statistical Physics, Vol. 52, 1988, pp. 479-487.
|
[15]
|
R. Silva, J. A. Alcaniz and J. A. S. Lima, “Constraining Nonextensive Statistics with Plasma Oscillation Data,” Physica A, Vol. 356, 2005, pp. 509-516.
|
[16]
|
S. Shaikh, A. Khan and P. K. Bhatia, “Jeans’ Gravita-tional Instability of a Thermally Conducting, Unbounded, Partially Ionized Plasma,” Zeitschrift für Naturforschung, Vol. 61, 2006, pp. 275-280.
|
[17]
|
V. Munoz, “A Nonextensive Statistics Approach for Langmuir Waves in Relativistic Plasmas,” Nonlinear Processes in Geophysics, Vol. 13, 2006, pp. 237-241.
|
[18]
|
F. Valentini, “Nonlinear Landau Damping in Nonex-ten-sive Statistics,” Physics of Plasmas, Vol. 12, 2005, pp. 1-7.
|
[19]
|
M. P. Leubner, “Nonextensive Theory of Dark Matter and Gas Density Profiles,” The Astrophysical Journal, Vol. 632, 2005, pp. L1-L4.
|
[20]
|
J. A. S. Lima, R. Silva and J. Santos, “Jeans’ Gravita-tional Instability and Nonextensive Kinetic Theory,” As-tronomy and Astrophysics, Vol. 396, 2002, pp. 309-313.
|
[21]
|
J. L. Du, “Jeans’ Criterion and Nonextensive Velocity Distribution Function in Kinetic Theory,” Physics Letters A, Vol. 320, 2004, pp. 347-351.
|
[22]
|
J. L. Du, “Nonextensivity in Nonequilibrium Plasma Systems with Coulombian Long-Range Interactions,” Physics Letters A, Vol. 329, 2004, pp. 262-267.
|
[23]
|
J. L. Du, “What Does the Nonextensive Parameter Stand for in Self-Gravitating Systems?” Astrophysics and Space Science, Vol. 305, 2006, pp. 247-251.
|
[24]
|
J. L. Du, “Nonextensivity and the Power-Law Distribu-tions for the Systems with Self-Gravitating Long-Range Interactions,” Astrophysics and Space Science, Vol. 312, 2007, pp. 47-55.
|
[25]
|
A. Plastino and A. R. Plastino, “Stellar Polytropes and Tsallis’ Entropy,” Physics Letters A, Vol. 174, 1993, pp. 384-386.
|
[26]
|
S. Abe, “Thermodynamic Limit of a Classical gas in Nonextensive Statistical Mechanics: Negative Specific Heat and Polytropism,” Physics Letters A, Vol. 263, 1999, pp. 424-429.
|
[27]
|
R. Silva and J. S. Alcaniz, “Negative Heat Capacity and Non-Extensive Kinetic Theory,” Physics Letters A, Vol. 313, 2003, pp. 393-396.
|
[28]
|
J. M. Liu, J. S. D. Groot, J. P. Matte, T. W. Johnston and R. P. Drake, “Measurements of Inverse Bremsstrahlung Absorption and Non-Maxwellian Electron Velocity Dis-tributions,” Physical Review Letters, Vol. 72, 1994, pp. 2717-2720.
|
[29]
|
E. G. D. Cohen, “Statistics and Dynamics,” Physica A, Vol. 305, 2002, pp. 19-26.
|
[30]
|
S. Shaikh, A. Khan and P. K. Bhatia, “Stability of Ther-mally Conducting Plasma in a Variable Magnetic Field,” Astrophysics and Space Science, Vol. 312, 2007, pp. 35-40.
|
[31]
|
S. Shaikh, A. Khan and P. K. Bhatia, “Thermally Con-ducting Partially Ionized Plasma in a Variable Magnetic Field,” Contributions to Plasma Physics, Vol. 47, No. 3, 2007, pp. 147-156.
|
[32]
|
S. Shaikh, A. Khan and P. K. Bhatia, “Jeans’ Gravita-tional Instability of a Thermally Conducting Plasma,” Physics Letters A, Vol. 372, 2008, pp. 1451-1457.
|