Design of Robust Power System Stabilizer Based on Particle Swarm Optimization
Magdi S. Mahmoud, Hisham M. Soliman
DOI: 10.4236/cs.2012.31011   PDF    HTML     6,832 Downloads   12,128 Views   Citations


In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of PSO, not sticking into a local minimum, is used to eliminate the conservativeness of designing a static output feedback (SOF) stabilizer within an iterative solution of LMIs. The technique is further extended to guarantee robustness against uncertainties wherein power systems operation is changing continuously due to load changes. Numerical simulation ahs illustrated the utility of the developed technique.

Share and Cite:

M. Mahmoud and H. Soliman, "Design of Robust Power System Stabilizer Based on Particle Swarm Optimization," Circuits and Systems, Vol. 3 No. 1, 2012, pp. 82-89. doi: 10.4236/cs.2012.31011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Kundur, “Power System Stability and Control,” McGraw Hill, New York, 1994.
[2] G. Guo, Y. Wang and D. Hill, “Nonlinear Output Stabilization Control for Multi-Machine Power Systems,” IEEE Transactions on Circuits and Systems, Vol. 47, No. 1, 2000, pp. 46-53. doi:10.1109/81.817388
[3] Z. Qu, J. Dorsey, J. Bond and J. McCalley, “Application of Robust Control to Sustained Oscillations in Power Systems,” IEEE Transactions on Circuits and Systems, Vol. 39, No. 2, 1992, pp. 470-476.
[4] R. You, H.J. Eghbali and M.H. Nehrir, “An Online Adaptive Neuro-Fuzzy Power System Stabilizer for Multimachine Systems”, IEEE Transactions Energy Conversion, Vol. 18, No. 1, 2003, pp. 117-125.
[5] H. M. Soliman, A. Elshafei, A. Shaltout and M. Morsi, “Robust Power System Stabilizer,” IEE Proceeding Generation, Transmission, and Distribution, Vol. 147, No. 2, 2000, pp. 285-291. doi:10.1049/ip-gtd:20000560
[6] B. Pai and B. Chaudhuri, “Robust Control in Power Systems,” Springer, New York, 2005.
[7] C. J. Zhu, M. Khammash, V. Vittal and W. Qiu, “Robust Power System Stabilizer Design using H∞ Loop Shaping Approach,” IEEE Transactions on Power Systems, Vol. 18, No. 2, 2003, pp. 810-818. doi:10.1109/TPWRS.2003.811176
[8] V. Bandal, B. Bandyopadhyay and A. M. Kulkarni, “Decentralized Sliding Mode Control Technique Based Power System Stabilizer (PSS) for Multimachine Power System,” Proceedings Control Applications, Toronto, 28-31 August 2005, pp. 55-60.
[9] A. I. Zecevic and D. D. ?iljak, “Control of Complex Systems: Structural Constraints and Uncertainty,” Springer, London, 2009.
[10] R. Gupta, B. Bandyopadhyay and A. Kulkarni, “Robust Decentralized Fast-Output Sampling Technique based Power System Stabilizer for a Multi Machine Power System,” International Journal of Systems Sciences, Vol. 36, No. 5, 2005, pp. 297-314. doi:10.1080/00207720500089440
[11] S. Rao and I. Sen, “Robust Pole Placement Stabilizer Design using Linear Matrix Inequalities,” IEEE Transactions Power Systems, Vol. 15, No. 1, 2003, pp. 313-319. doi:10.1109/59.852138
[12] I. Kamwa, R. Grondin and Y. Hebert, “Wide-Area Measurement Based Stabilizing Control of Large Power Systems—A Decentralized/Hierarchical Approach,” IEEE Transactions Power Systems, Vol. 16, No. 1, 2001, pp. 136-153. doi:10.1109/59.910791
[13] C. Liu, J. Jung, G. T. Heydt and V. Vittal, “The Strategic Power Infrastructure Defense (SPID) System,” IEEE Control System Magazine, Vol. 20, No. 1, 2000, pp. 40-52.
[14] H. M. Soliman, M. Morsi, M.F. Hassan and M. Awadallah, “Power system reliable stabilization with actuator failure,” Electric Power Components and Systems, Vol. 37, No. 1, 2009, pp. 61-77. doi:10.1080/15325000802322020
[15] H. M. Soliman, H. E. Ehab, E. H. E. Bayoumi and M. A. Awadallah, “Reconfigurable Fault-Tolerant PSS and FACTS Controllers,” Electric Power Components and Systems, Vol. 38, No. 10, 2010, pp. 1446-1468. doi:10.1080/15325001003735200
[16] H. M. Soliman, A. Dabroum, M. S. Mahmoud and M Soliman, “Guaranteed-Cost Reliable Control with Regional Pole Placement of a Power System,” Journal of the Franklin Institute, Vol. 348, No. 4, 2011, pp. 884-898. doi:10.1016/j.jfranklin.2011.02.013
[17] Y. Y. Cao, J. Lam and Y. X. Sun, “Static Output Feedback Stabilization: An ILMI Approach,” Automatica, Vol. 34, No. 12, 1998, pp. 1641-1645. doi:10.1016/S0005-1098(98)80021-6
[18] Y. He and Q. G. Wang, “An Improved ILMI Method for Static Output Feedback Control with Application to Multivariable PID Control,” IEEE Transactions Automatic Control, Vol. 51, No. 10, 2006, pp. 2356-2361. doi:10.1109/TAC.2006.883029
[19] K. E. Parsopoulos and M. N. Vrahatis, “On the Computation of All Global Minimizes Through Particle Swarm Optimization,” IEEE Transactions Evolutionary Computation, Vol. 8, No. 3, 2004, pp. 211-220. doi:10.1109/TEVC.2004.826076
[20] R. Mendes, J. Kennedy and José Neves, “The Fully Informed Particle Swarm: Simpler, Maybe Better,” IEEE Transactions. Evolutionary Computation, Vol. 8, No. 3, 2004, pp. 345-360. doi:10.1109/TEVC.2004.826074
[21] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali “LMI Control Toolbox,” The Math Works Inc., Natick, 1995.
[22] M. S. Mahmoud, “Decentralized Control and Filtering in Interconnected Dynamic Systems,” CRC Press, New York, 2010. doi:10.1201/b10349
[23] J. Passerby, “Analysis and Control of Power System oscillations,” Technical Brochure 111, CIGRE, 1996.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.