Effect of PEDOT:PSS Layer and ITO Ozonization in Arylenevinylene-co-Pyrrolenevinylene (AVPV) Based Solar Cell Devices
Ankur Solanki, S. Sundar Kumar Iyer, Ashish Garg
DOI: 10.4236/msa.2011.212227   PDF    HTML     5,132 Downloads   8,659 Views   Citations


Arylenevinylene-co-pyrrolenevinylene (AVPV) is polymer oligomer system derived from arylbridged bispyrroles which has been explored for photovoltaic devices. In this paper, we show the dependence of the photovoltaic device parameters on the anode surface treatment in an organic single layer photovoltaic device based on AVPV as an electron donor. Since the total quantum efficiency includes the charge collection efficiency at the electrodes, experiments were carried out to vary the anode (ITO) characteristics, achieved by using ITO with or without ozonization and with or without PEDOT:PSS (Polyethylene dioxythiophene:Polystyrene sulphonic acid) layer. Devices fabricated on ITO anode (without ozonization and without PEDOT:PSS) exhibited the maximum current density (Jsc = 1.3 µA·cm–2) as compared to those devices where ITO was ozonized as well as had a PEDOT:PSS layer (Jsc = 0.1 µA·cm–2) measured under 1 sun illumination of AM 1.5 through a calibrated solar simulator.

Share and Cite:

A. Solanki, S. Iyer and A. Garg, "Effect of PEDOT:PSS Layer and ITO Ozonization in Arylenevinylene-co-Pyrrolenevinylene (AVPV) Based Solar Cell Devices," Materials Sciences and Applications, Vol. 2 No. 12, 2011, pp. 1702-1707. doi: 10.4236/msa.2011.212227.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. A. Chamberlain, “Organic Solar Cells: A Review,” Solar Cells, Vol. 8, No. 1, 1983, pp. 47-83. doi:10.1016/0379-6787(83)90039-X
[2] B. Gregg, “The Photoconversion Mechanism of Excitonic Solar Cells,” Materials Research Bulletin, Vol. 30, No. 1, 2005, pp. 20-22. doi:10.1557/mrs2005.3
[3] H. Spanggaard and F. C. Krebs, “A Brief History of the Development of Organic and Polymeric Photovoltaics,” Solar Energy Materials and Solar Cells, Vol. 83, No. 2-3, 2004, pp. 125-146. doi:10.1016/j.solmat.2004.02.021
[4] Z. He, C. Zhong , X. Huang , W. Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Advanced Materials, Vol. 23, No. 40, 2011, pp. 4636-4643. doi:10.1002/adma.201103006
[5] H. Hoppe and N. S. Sariciftci, “Organic Solar Cells: An Overview,” Journal of Materials Research, Vol. 19, No. 7, 2004, pp. 1924-1945. doi:10.1557/JMR.2004.0252
[6] E. Soto, J. C. MacDonald, C. G. F. Cooper and W. G. McGimpsey, “A Non-Covalent Strategy for the Assembly of Supramolecular Photocurrent-Generating Systems,” Journal of the American Chemical Society, Vol. 125, No. 10, 2003, pp. 2838-2839. doi:10.1021/ja0289548
[7] S. Gunes, H. Neugebauer and N. S. Sariciftci, “Conjugated Polymer-Based Organic Solar Cells,” Chemistry Reviews, Vol. 107, No. 4, 2007, pp. 1324-1338. doi:10.1021/cr050149z
[8] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, “Device Physics of Polymer: Fullerene Bulk Heterojunction Solar Cells,” Advanced Materials, Vol. 19, No. 12, 2007, pp. 1551-1566. doi:10.1002/adma.200601093
[9] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science, Vol. 295, No. 5564, 2002, pp. 2425-2427. doi:10.1126/science.1069156
[10] S. A. Chen and C. C. Lee, “Processable Low Band Gap N-Conjugated Polymer, Poly (Isothianaphthene): Its Synthesis and Reaction Mechanism,” Pure and Applied Chemistry, Vol. 67, No. 12, 1995, pp. 1983-1990. doi:10.1351/pac199567121983
[11] E. Bundgaard and F. C. Krebs, “Low Band Gap Polymers for Organic Photovoltaics,” Solar Energy Materials and Solar Cells, Vol. 91, No. 11, 2007, pp.954-985. doi:10.1016/j.solmat.2007.01.015
[12] M. M. Wienk, M. P. Struijk and R. A. J. Janssen, “Low Band Gap Polymer Bulk Heterojunction Solar Cells,” Chemical Physics Letters, Vol. 422, No. 4-6, 2006, pp. 488-491. doi:10.1016/j.cplett.2006.03.027
[13] M. Jorgensen, K. Norrman and F. C. Krebs, “Stability/Degradation of Polymer Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 92, No. 7, 2008, pp. 686- 714. doi:10.1016/j.solmat.2008.01.005
[14] A. K. Biswas, Ashish, A. K. Tripathi, Y. N. Mohapatra and A. Ajayaghosh, “Synthesis, Photophysical, and Electroluminescent Properties of Arylenevinylenes-copyrrolenevinylenes Derived from Divinylaryl Bridged Bispyrroles,” Macromolecules, Vol. 40, No. 8, 2007, pp. 2657- 2665. doi:10.1021/ma070116g
[15] A. Solanki, A. Gupta, S. S. K. Iyer and A. Garg, “Photo Voltaic Effect in Arylenevinylene-co-Pyrrolenevi Nylene (AVPV),” Solar Energy Materials and Solar Cells, Vol. 93, No. 2, 2009, pp. 211-214. doi:10.1016/j.solmat.2008.09.029
[16] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens and L. Sanchez, “The Influence of Materials Work Function on the Open Circuit Voltage of Plastic Solar Cell,” Thin Solid Films, Vol. 403-404, 2002, pp. 368-372. doi:10.1016/S0040-6090(01)01586-3
[17] M. Ramsdale, J. A. Barker, A. C. Arias, J. D. MacKenzie and R. H. Friend, “The Origin of the Open-Circuit Voltage in Polyfluorene-Based Photovoltaic Devices,” Journal of Applied Physics, Vol. 92, No. 8, 2002, pp. 4266- 4270. doi:10.1063/1.1506385
[18] A. Geiser, B. Fan, H. Benmansour, F. Castro and J. Heier, “Poly(3-Hexylthi Ophene)/C60 Hetero Junction Solar Cells: Implication of Morphology on Performance and Ambipo-Lar Charge Collection,” Solar Energy Materials and Solar Cells, Vol. 92, No. 4, 2008, pp. 464-473. doi:10.1016/j.solmat.2007.11.001
[19] S. W. Oh, H. W. Rhee, C. Lee and Y. C. Kim, “The Photo-Voltaic Effect of the p–n Heterojunction Organic Photo-Voltaic Device Using a Nano Template Method,” Current Applied Physics, Vol. 5, No. 1, 2005, pp. 55-58. doi:10.1016/j.cap.2003.11.079
[20] N. Srivastava, “Circuit Modeling of P3HT: PCBM Based on Blend Solar Cellsand Experimental Study of Effect of PEDOT: PSS Layer on These Solar Cells,” M.Tech Dissertation, Departmental of Electrical Engineering, Indian Institute of Technology, Kanpur, 2008.
[21] Z. R. Hong, C. J. Liang and X. Y. Sun, “Characterization of Organic Photovoltaic Devices with Indium-Tin-Oxide Anode Treated by Plasma in Various Gases,” Journal of Applied Physics, Vol. 100, No. 9, 2006, Article ID: 093711. doi:10.1063/1.2372574
[22] B. Gregg, “The Photoconversion Mechanism of Excitonic Solar Cells,” MRS Bulletin, Vol. 30, 2005, pp. 20-22. doi:10.1557/mrs2005.3
[23] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li and Y. Yang, “Absorption Spectra Modification in Poly(3-Hexylthiophene):Methanofullerene Blend Thin Films,” Chemical Physics Letters, Vol. 411, No. 1-3, 2005, pp. 138-143. doi:10.1016/j.cplett.2005.06.027
[24] D. Gupta, M. Bag and K. S. Narayan, “Correlating Reduced Fill Factor in Polymer Solar Cells to Contact Effects,” Applied Physics Letters, Vol. 92, No. 9, 2008, Article ID: 093301.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.