[1]
|
Krishnan, G., Singh, S., Pathania, M., Gosavi, S., Abhishek, S., Parchani, A., et al. (2023) Artificial Intelligence in Clinical Medicine: Catalyzing a Sustainable Global Healthcare Paradigm. Frontiers in Artificial Intelligence, 6, Article ID: 1227091. https://doi.org/10.3389/frai.2023.1227091
|
[2]
|
Sakly, H., Guetari, R. and Kraiem, N. (2024) Scalable Artificial Intelligence for Healthcare: Advancing AI Solutions for Global Health Challenges. CRC Press.
|
[3]
|
Zhou, F., Xie, H.L. and Qu, J. (2008) Ophthalmic Resource Status and Service Ability Survey. China Hospital, No. 4, 14-16.
|
[4]
|
Reid, J.E. and Eaton, E. (2019) Artificial Intelligence for Pediatric Ophthalmology. Current Opinion in Ophthalmology, 30, 337-346. https://doi.org/10.1097/icu.0000000000000593
|
[5]
|
Hogarty, D.T., Mackey, D.A. and Hewitt, A.W. (2018) Current State and Future Prospects of Artificial Intelligence in Ophthalmology: A Review. Clinical & Experimental Ophthalmology, 47, 128-139. https://doi.org/10.1111/ceo.13381
|
[6]
|
Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. https://doi.org/10.1016/j.ophtha.2016.01.006
|
[7]
|
Dong, L., Kang, Y.K., Li, Y., Wei, W.B. and Jonas, J.B. (2020) Prevalence and Time Trends of Myopia in Children and Adolescents in China: A Systemic Review and Meta-Analysis. Retina, 40, 399-411. https://doi.org/10.1097/iae.0000000000002590
|
[8]
|
Wen, L.B., Lan, W.Z., Li, X.N., et al. (2017) Study on the Accuracy and Stability of the New Device “Cloud Clip” for Objective Monitoring of Myopia-Related Environ-mental Factors. Chinese Journal of Optometry and Visual Sciences, 19, 198-203.
|
[9]
|
Cao, Y., Lan, W., Wen, L., Li, X., Pan, L., Wang, X., et al. (2020) An Effectiveness Study of a Wearable Device (Clouclip) Intervention in Unhealthy Visual Behaviors among School-Age Children: A Pilot Study. Medicine, 99, e17992. https://doi.org/10.1097/md.0000000000017992
|
[10]
|
Pei, C.L. (2014) Study on Visual Health Behavior and Myopia Screening Methods for Primary and Middle School Students in China. Anhui Medical University.
|
[11]
|
Ling, Y.N.C., Zhu, X. and Ang, M. (2024) Artificial Intelligence in Myopia in Children: Current Trends and Future Directions. Current Opinion in Ophthalmology, 35, 463-471.
|
[12]
|
Yamada, T., Hatt, S.R., Leske, D.A., Moke, P.S., Parrucci, N.L., Reese, J.J., et al. (2015) A New Computer-Based Pediatric Vision-Screening Test. Journal of American Association for Pediatric Ophthalmology and Strabismus, 19, 157-162. https://doi.org/10.1016/j.jaapos.2015.01.011
|
[13]
|
Rosenfield, M. and Ciuffreda, K.J. (2017) Evaluation of the Svone Handheld Autorefractor in a Pediatric Population. Optometry and Vision Science, 94, 159-165. https://doi.org/10.1097/opx.0000000000000999
|
[14]
|
Yang, Y., Li, R., Lin, D., Zhang, X., Li, W., Wang, J., et al. (2020) Automatic Identification of Myopia Based on Ocular Appearance Images Using Deep Learning. Annals of Translational Medicine, 8, 705. https://doi.org/10.21037/atm.2019.12.39
|
[15]
|
Yang, X., Chen, G., Qian, Y., Wang, Y., Zhai, Y., Fan, D., et al. (2020) Prediction of Myopia in Adolescents through Machine Learning Methods. International Journal of Environmental Research and Public Health, 17, Article No. 463. https://doi.org/10.3390/ijerph17020463
|
[16]
|
Hemelings, R., Elen, B., Blaschko, M.B., Jacob, J., Stalmans, I. and De Boever, P. (2021) Pathological Myopia Classification with Simultaneous Lesion Segmentation Using Deep Learning. Computer Methods and Programs in Biomedicine, 199, Article 105920. https://doi.org/10.1016/j.cmpb.2020.105920
|
[17]
|
Li, Y., Feng, W., Zhao, X., Liu, B., Zhang, Y., Chi, W., et al. (2020) Development and Validation of a Deep Learning System to Screen Vision-Threatening Conditions in High Myopia Using Optical Coherence Tomography Images. British Journal of Ophthalmology, 106, 633-639. https://doi.org/10.1136/bjophthalmol-2020-317825
|
[18]
|
Sogawa, T., Tabuchi, H., Nagasato, D., Masumoto, H., Ikuno, Y., Ohsugi, H., et al. (2020) Accuracy of a Deep Convolutional Neural Network in the Detection of Myopic Macular Diseases Using Swept-Source Optical Coherence Tomography. PLOS ONE, 15, e0227240. https://doi.org/10.1371/journal.pone.0227240
|
[19]
|
Godefrooij, D.A., de Wit, G.A., Uiterwaal, C.S., Imhof, S.M. and Wisse, R.P.L. (2017) Age-Specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. American Journal of Ophthalmology, 175, 169-172. https://doi.org/10.1016/j.ajo.2016.12.015
|
[20]
|
de Sanctis, U., Loiacono, C., Richiardi, L., Turco, D., Mutani, B. and Grignolo, F.M. (2008) Sensitivity and Specificity of Posterior Corneal Elevation Measured by Pentacam in Discriminating Keratoconus/Subclinical Keratoconus. Ophthalmology, 115, 1534-1539. https://doi.org/10.1016/j.ophtha.2008.02.020
|
[21]
|
Gordon-Shaag, A., Millodot, M., Ifrah, R. and Shneor, E. (2012) Aberrations and Topography in Normal, Keratoconus-Suspect, and Keratoconic Eyes. Optometry and Vision Science, 89, 411-418. https://doi.org/10.1097/opx.0b013e318249d727
|
[22]
|
Whitcher, J.P., Srinivasan, M. and Upadhyay, M.P. (2001) Corneal Blindness: A Global Perspective. Bulletin of the World Health Organization, 79, 214-221.
|
[23]
|
Kanski, J.J. and Bowling, B. (2011) Neuro-Ophthalmology. In: Clinical Ophthalmology: A Systematic Approach, Elsevier, 783-860.
|
[24]
|
Kuo, B., Chang, W., Liao, T., Liu, F., Liu, H., Chu, H., et al. (2020) Keratoconus Screening Based on Deep Learning Approach of Corneal Topography. Translational Vision Science & Technology, 9, Article No. 53. https://doi.org/10.1167/tvst.9.2.53
|
[25]
|
Kamiya, K., Ayatsuka, Y., Kato, Y., Fujimura, F., Takahashi, M., Shoji, N., et al. (2019) Keratoconus Detection Using Deep Learning of Colour-Coded Maps with Anterior Segment Optical Coherence Tomography: A Diagnostic Accuracy Study. BMJ Open, 9, e031313. https://doi.org/10.1136/bmjopen-2019-031313
|
[26]
|
Balyen, L. and Peto, T. (2019) Promising Artificial Intelligence-Machine Learning Deep Learning Algorithms in Ophthalmology. The Asia-Pacific Journal of Ophthalmology (Phila), 8, 264-272.
|
[27]
|
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
|
[28]
|
Nawathey, S.N., Reddy, A., Tak, N., et al. (2024) Cataract Diagnosis at Scale: Leveraging Cloud Resources for Accurate and Eco-Friendly Fundus Image Analysis with AI. Investigative Ophthalmology & Visual Science, 65, 3717.
|
[29]
|
Li, H.Q., et al. (2010) A Computer-Aided Diagnosis System of Nuclear Cataract. IEEE Transactions on Biomedical Engineering, 57, 1690-1698. https://doi.org/10.1109/tbme.2010.2041454
|
[30]
|
Zhang, H., Niu, K., Xiong, Y., Yang, W., He, Z. and Song, H. (2019) Automatic Cataract Grading Methods Based on Deep Learning. Computer Methods and Programs in Biomedicine, 182, Article ID: 104978. https://doi.org/10.1016/j.cmpb.2019.07.006
|
[31]
|
Aristodemou, P., Knox Cartwright, N.E., Sparrow, J.M. and Johnston, R.L. (2011) Formula Choice: Hoffer Q, Holladay 1, or SRK/T and Refractive Outcomes in 8108 Eyes after Cataract Surgery with Biometry by Partial Coherence Interferometry. Journal of Cataract and Refractive Surgery, 37, 63-71. https://doi.org/10.1016/j.jcrs.2010.07.032
|
[32]
|
Siddiqui, A.A., Ladas, J.G. and Lee, J.K. (2020) Artificial Intelligence in Cornea, Refractive, and Cataract Surgery. Current Opinion in Ophthalmology, 31, 253-260. https://doi.org/10.1097/icu.0000000000000673
|
[33]
|
Soh, Z., Yu, M., Betzler, B.K., Majithia, S., Thakur, S., Tham, Y.C., et al. (2021) The Global Extent of Undetected Glaucoma in Adults: A Systematic Review and Meta-Analysis. Ophthalmology, 128, 1393-1404. https://doi.org/10.1016/j.ophtha.2021.04.009
|
[34]
|
Weinreb, R.N. and Khaw, P.T. (2004) Primary Open-Angle Glaucoma. The Lancet, 363, 1711-1720. https://doi.org/10.1016/s0140-6736(04)16257-0
|
[35]
|
Liang, Y.B., Friedman, D.S., Zhou, Q., Yang, X., Sun, L.P., Guo, L.X., et al. (2011) Prevalence of Primary Open Angle Glaucoma in a Rural Adult Chinese Population: The Handan Eye Study. Investigative Opthalmology & Visual Science, 52, 8250-8257. https://doi.org/10.1167/iovs.11-7472
|
[36]
|
Mwanza, J., Lee, G., Budenz, D.L., Warren, J.L., Wall, M., Artes, P.H., et al. (2018) Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma. Translational Vision Science & Technology, 7, 16. https://doi.org/10.1167/tvst.7.2.16
|
[37]
|
Liu, H., Li, L., Wormstone, I.M., Qiao, C., Zhang, C., Liu, P., et al. (2019) Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmology, 137, 1353-1360. https://doi.org/10.1001/jamaophthalmol.2019.3501
|
[38]
|
Parrish, R.K., Schiffman, J.C., Feuer, W.J., Anderson, D.R., Budenz, D.L., Wells-Albornoz, M., et al. (2005) Test-Retest Reproducibility of Optic Disk Deterioration Detected from Stereophotographs by Masked Graders. American Journal of Ophthalmology, 140, 762-764. https://doi.org/10.1016/j.ajo.2005.04.044
|
[39]
|
Li, F., Yan, L., Wang, Y., Shi, J., Chen, H., Zhang, X., et al. (2020) Deep Learning-Based Automated Detection of Glaucomatous Optic Neuropathy on Color Fundus Photographs. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 851-867. https://doi.org/10.1007/s00417-020-04609-8
|
[40]
|
Medeiros, F.A., Jammal, A.A. and Thompson, A.C. (2019) From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology, 126, 513-521. https://doi.org/10.1016/j.ophtha.2018.12.033
|
[41]
|
Glaucoma Group of Ophthalmology Branch of Chinese Medical Association, Ophthalmology Artificial Intelligence Group of China Medical Equipment Association (2020) Guidelines for Standardized Design and Application of Artificial Intelligence Glau-Coma Auxiliary Screening System Based on Fundus Photography in China. Chinese Journal of Ophthalmology, 56, 423-432.
|
[42]
|
Mariottoni, E.B., Jammal, A.A., Berchuck, S.I., Shigueoka, L.S., Tavares, I.M. and Medeiros, F.A. (2021) An Objective Structural and Functional Reference Standard in Glaucoma. Scientific Reports, 11, Article No. 1752. https://doi.org/10.1038/s41598-021-80993-3
|
[43]
|
Lee, J., Kim, Y.K., Park, K.H. and Jeoung, J.W. (2020) Diagnosing Glaucoma with Spectral-Domain Optical Coherence Tomography Using Deep Learning Classifier. Journal of Glaucoma, 29, 287-294. https://doi.org/10.1097/ijg.0000000000001458
|
[44]
|
Thompson, A.C., Jammal, A.A., Berchuck, S.I., Mariottoni, E.B. and Medeiros, F.A. (2020) Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma from Optical Coherence Tomography Scans. JAMA Ophthalmology, 138, 333-339. https://doi.org/10.1001/jamaophthalmol.2019.5983
|
[45]
|
Fu, H.Z., Garvin, M.K., MacGillivray, T., et al. (2019) Ophthalmic Medical Image Analysis. Springer, 52-59.
|
[46]
|
Maetschke, S., Antony, B., Ishikawa, H., Wollstein, G., Schuman, J. and Garnavi, R. (2019) A Feature Agnostic Approach for Glaucoma Detection in OCT Volumes. PLOS ONE, 14, e0219126. https://doi.org/10.1371/journal.pone.0219126
|
[47]
|
Li, F., Wang, Z., Qu, G., Song, D., Yuan, Y., Xu, Y., et al. (2018) Automatic Differentiation of Glaucoma Visual Field from Non-Glaucoma Visual Filed Using Deep Convolutional Neural Network. BMC Medical Imaging, 18, Article No. 35. https://doi.org/10.1186/s12880-018-0273-5
|
[48]
|
Elze, T., Pasquale, L.R., Shen, L.Q., Chen, T.C., Wiggs, J.L. and Bex, P.J. (2015) Patterns of Functional Vision Loss in Glaucoma Determined with Archetypal Analysis. Journal of the Royal Society Interface, 12, Article ID: 20141118. https://doi.org/10.1098/rsif.2014.1118
|
[49]
|
Wang, M., Shen, L.Q., Pasquale, L.R., Petrakos, P., Formica, S., Boland, M.V., et al. (2019) An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis. Investigative Opthalmology & Visual Science, 60, 365-375. https://doi.org/10.1167/iovs.18-25568
|
[50]
|
Bowd, C., Hao, J., Tavares, I.M., Medeiros, F.A., Zangwill, L.M., Lee, T., et al. (2008) Bayesian Machine Learning Classifiers for Combining Structural and Functional Measurements to Classify Healthy and Glaucomatous Eyes. Investigative Opthalmology & Visual Science, 49, 945-953. https://doi.org/10.1167/iovs.07-1083
|
[51]
|
Mursch-Edlmayr, A.S., Ng, W.S., Diniz-Filho, A., Sousa, D.C., Arnould, L., Schlenker, M.B., et al. (2020) Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Translational Vision Science & Technology, 9, Article No. 55. https://doi.org/10.1167/tvst.9.2.55
|
[52]
|
Xiong, J., Li, F., Song, D.P., et al. (2022) Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy. Ophthalmology, 129, 171-180. https://doi.org/10.1016/j.ophtha.2021.07.032
|
[53]
|
Wong, W.L., Su, X., Li, X., Cheung, C.M.G., Klein, R., Cheng, C., et al. (2014) Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-analysis. The Lancet Global Health, 2, e106-e116. https://doi.org/10.1016/s2214-109x(13)70145-1
|
[54]
|
Gilbert, M.J. and Sun, J.K. (2020) Artificial Intelligence in the Assessment of Diabetic Retinopathy from Fundus Photographs. Seminars in Ophthalmology, 35, 325-332. https://doi.org/10.1080/08820538.2020.1855358
|
[55]
|
Cheung, N., Mitchell, P. and Wong, T.Y. (2010) Diabetic Retinopathy. The Lancet, 376, 124-136. https://doi.org/10.1016/s0140-6736(09)62124-3
|
[56]
|
Li, N., Ma, M., Lai, M., Gu, L., Kang, M., Wang, Z., et al. (2021) A Stratified Analysis of a Deep Learning Algorithm in the Diagnosis of Diabetic Retinopathy in a Real‐world Study. Journal of Diabetes, 14, 111-120. https://doi.org/10.1111/1753-0407.13241
|
[57]
|
Cheung, C.Y., Tang, F., Ting, D.S.W., Tan, G.S.W. and Wong, T.Y. (2019) Artificial Intelligence in Diabetic Eye Disease Screening. The Asia-Pacific Journal of Ophthalmology (Phila), 8, 158-164.
|
[58]
|
Yu, C., Xie, S., Niu, S., Ji, Z., Fan, W., Yuan, S., et al. (2019) Hyper‐Reflective Foci Segmentation in SD‐OCT Retinal Images with Diabetic Retinopathy Using Deep Convolutional Neural Networks. Medical Physics, 46, 4502-4519. https://doi.org/10.1002/mp.13728
|
[59]
|
Topol, E.J. (2019) High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. https://doi.org/10.1038/s41591-018-0300-7
|
[60]
|
Korot, E., Wood, E., Weiner, A., Sim, D.A. and Trese, M. (2019) A Renaissance of Teleophthalmology through Artificial Intelligence. Eye, 33, 861-863. https://doi.org/10.1038/s41433-018-0324-8
|
[61]
|
Zhao, Y., Li, X., Li, S., Dong, M., Yu, H., Zhang, M., et al. (2022) Using Machine Learning Techniques to Develop Risk Prediction Models for the Risk of Incident Diabetic Retinopathy among Patients with Type 2 Diabetes Mellitus: A Cohort Study. Frontiers in Endocrinology, 13, Article ID: 876559. https://doi.org/10.3389/fendo.2022.876559
|
[62]
|
Celi, L.A., Hinske Christian, L., Alterovitz, G. and Szolovits, P. (2008) An Artificial Intelligence Tool to Predict Fluid Requirement in the Intensive Care Unit: A Proof-of-Concept Study. Critical Care, 12, R151. https://doi.org/10.1186/cc7140
|
[63]
|
Yeh, T., Lo, K., Hwang, D., Lin, T. and Chou, Y. (2022) Evaluation of a Remote Telemedicine Platform Using a Novel Handheld Fundus Camera: Physician and Patient Perceptions from Real-World Experience. Journal of the Chinese Medical Association, 85, 793-798. https://doi.org/10.1097/jcma.0000000000000755
|
[64]
|
Heydon, P., Egan, C., Bolter, L., Chambers, R., Anderson, J., Aldington, S., et al. (2020) Prospective Evaluation of an Artificial Intelligence-Enabled Algorithm for Automated Diabetic Retinopathy Screening of 30000 Patients. British Journal of Ophthalmology, 105, 723-728. https://doi.org/10.1136/bjophthalmol-2020-316594
|
[65]
|
Pei, L., Huang, X., Mi, Q.L. and Jian, W.Y. (2020) Applied Research on Remote System Screening of Diabetic Retinopathy in Southwest China. Chinese Journal of Ophthalmology, Otorhinolaryngology, 10, 15-18, 30.
|
[66]
|
Wang, J., Hormel, T.T., Gao, L., Zang, P., Guo, Y., Wang, X., et al. (2020) Automated Diagnosis and Segmentation of Choroidal Neovascularization in OCT Angiography Using Deep Learning. Biomedical Optics Express, 11, 927-944. https://doi.org/10.1364/boe.379977
|
[67]
|
Sawai, Y., Miyata, M., Uji, A., Ooto, S., Tamura, H., Ueda-Arakawa, N., et al. (2020) Usefulness of Denoising Process to Depict Myopic Choroidal Neovascularisation Using a Single Optical Coherence Tomography Angiography Image. Scientific Reports, 10, Article No. 6172. https://doi.org/10.1038/s41598-020-62607-6
|
[68]
|
Solebo, A.L., Teoh, L. and Rahi, J. (2017) Epidemiology of Blindness in Children. Archives of Disease in Childhood, 102, 853-857. https://doi.org/10.1136/archdischild-2016-310532
|
[69]
|
Yi, L., Guo, Y.J., Fei, X.L., et al. (2024) Current Status of Clinical Use and Management of Artificial Intelligence Medical Devices Abroad. China Digital Medicine, 19, 72-79.
|
[70]
|
Peng, Y., Zhu, W., Chen, Z., Wang, M., Geng, L., Yu, K., et al. (2021) Automatic Staging for Retinopathy of Prematurity with Deep Feature Fusion and Ordinal Classification Strategy. IEEE Transactions on Medical Imaging, 40, 1750-1762. https://doi.org/10.1109/tmi.2021.3065753
|
[71]
|
Zhao, J., Lei, B., Wu, Z., Zhang, Y., Li, Y., Wang, L., et al. (2019) A Deep Learning Framework for Identifying Zone I in Retcam Images. IEEE Access, 7, 103530-103537. https://doi.org/10.1109/access.2019.2930120
|
[72]
|
Peng, Y., Chen, Z., Zhu, W., Shi, F., Wang, M., Zhou, Y., et al. (2022) Automatic Zoning for Retinopathy of Prematurity with Semi-Supervised Feature Calibration Adversarial Learning. Biomedical Optics Express, 13, 1968-1984. https://doi.org/10.1364/boe.447224
|
[73]
|
Campbell, J.P., Kim, S.J., Brown, J.M., et al. (2021) Evaluation of a Deep Learning-Derived Quantitative Retinopathy of Prematurity Severity Scale. Ophthalmology, 128, 1070-1076.
|
[74]
|
Campbell, J.P., Chiang, M.F., Chen, J.S., et al. (2022) Artificial Intelligence for Retinopathy of Prematurity: Validation of a Vascular Severity Scale against International Expert Diagnosis. Ophthalmology, 129, e69-e76.
|
[75]
|
Repka, M.X., Lum, F. and Burugapalli, B. (2018) Strabismus, Strabismus Surgery, and Reoperation Rate in the United States: Analysis from the IRIS Registry. Ophthalmology, 125, 1646-1653. https://doi.org/10.1016/j.ophtha.2018.04.024
|
[76]
|
Hu, J.Q., Zhu, C.H., Ye, X.H., et al. (2008) Diagnostic Evaluation of Color Doppler Ultrasound and CT, MRI in Orbital Diseases. Journal of Nanjing Medical University (Natural Science Edition), No. 1, 90-93.
|
[77]
|
de Figueiredo, L.A., Dias, J.V.P., Polati, M., Carricondo, P.C. and Debert, I. (2021) Strabismus and Artificial Intelligence App: Optimizing Diagnostic and Accuracy. Translational Vision Science & Technology, 10, Article No. 22. https://doi.org/10.1167/tvst.10.7.22
|
[78]
|
Fan, Z., Lu, J.W., Zheng, C., et al. (2018) Automated Strabismus Detection Based on Deep Neural Networks for Telemedicine Applications. http://arxiv.org/abs/1809.02940
|
[79]
|
Leite, F.H.F., Almeida, J.D.S.d., Cruz, L.B.d., Teixeira, J.A.M., Junior, G.B., Silva, A.C., et al. (2021) Surgical Planning of Horizontal Strabismus Using Multiple Output Regression Tree. Computers in Biology and Medicine, 134, Article ID: 104493. https://doi.org/10.1016/j.compbiomed.2021.104493
|
[80]
|
(2024) The Value of Magnetic Resonance T2-Mapping in Evaluating the Activity of Graves Ophthalmopathy. Medical Journal of Chinese PLA, 49, 70-74.
|
[81]
|
Taylor, P.N., Zhang, L., Lee, R.W.J., Muller, I., Ezra, D.G., Dayan, C.M., et al. (2019) New Insights into the Pathogenesis and Nonsurgical Management of Graves Orbitopathy. Nature Reviews Endocrinology, 16, 104-116. https://doi.org/10.1038/s41574-019-0305-4
|
[82]
|
Bartalena, L. and Tanda, M.L. (2022) Current Concepts Regarding Graves’ Orbitopathy. Journal of Internal Medicine, 292, 692-716. https://doi.org/10.1111/joim.13524
|
[83]
|
Mayer, E.J., Fox, D.L., Herdman, G., Hsuan, J., Kabala, J., Goddard, P., et al. (2005) Signal Intensity, Clinical Activity and Cross-Sectional Areas on MRI Scans in Thyroid Eye Disease. European Journal of Radiology, 56, 20-24. https://doi.org/10.1016/j.ejrad.2005.03.027
|
[84]
|
Lin, C., Song, X., Li, L., Li, Y., Jiang, M., Sun, R., et al. (2021) Detection of Active and Inactive Phases of Thyroid-Associated Ophthalmopathy Using Deep Convolutional Neural Network. BMC Ophthalmology, 21, Article No. 39. https://doi.org/10.1186/s12886-020-01783-5
|
[85]
|
Yao, N., Li, L., Gao, Z., Zhao, C., Li, Y., Han, C., et al. (2023) Deep Learning-Based Diagnosis of Disease Activity in Patients with Graves’ Orbitopathy Using Orbital SPECT/CT. European Journal of Nuclear Medicine and Molecular Imaging, 50, 3666-3674. https://doi.org/10.1007/s00259-023-06312-2
|
[86]
|
Dolman, P.J. (2020) Dysthyroid Optic Neuropathy: Evaluation and Management. Journal of Endocrinological Investigation, 44, 421-429. https://doi.org/10.1007/s40618-020-01361-y
|
[87]
|
Wu, C., Li, S., Liu, X., Jiang, F. and Shi, B. (2022) Dms-mafm+efficientnet: A Hybrid Model for Predicting Dysthyroid Optic Neuropathy. Medical & Biological Engineering & Computing, 60, 3217-3230. https://doi.org/10.1007/s11517-022-02663-4
|
[88]
|
Kaliki, S., Shields, C. and Shields, J. (2015) Uveal Melanoma: Estimating Prognosis. Indian Journal of Ophthalmology, 63, 93-102. https://doi.org/10.4103/0301-4738.154367
|
[89]
|
Rantala, E.S., Hernberg, M.M., Piperno-Neumann, S., Grossniklaus, H.E. and Kivelä, T.T. (2022) Metastatic Uveal Melanoma: The Final Frontier. Progress in Retinal and Eye Research, 90, Article ID: 101041. https://doi.org/10.1016/j.preteyeres.2022.101041
|
[90]
|
Zhang, H., Liu, Y., Zhang, K., Hui, S., Feng, Y., Luo, J., et al. (2021) Validation of the Relationship between Iris Color and Uveal Melanoma Using Artificial Intelligence with Multiple Paths in a Large Chinese Population. Frontiers in Cell and Developmental Biology, 9, Article ID: 713209. https://doi.org/10.3389/fcell.2021.713209
|
[91]
|
Shields, C., Ancona-Lezama, D. and Dalvin, L. (2020) Modern Treatment of Retinoblastoma: A 2020 Review. Indian Journal of Ophthalmology, 68, Article No. 2356. https://doi.org/10.4103/ijo.ijo_721_20
|
[92]
|
Kumar, P., Suganthi, D., Valarmathi, K., Swain, M.P., Vashistha, P., Buddhi, D., et al. (2023) [Retracted] a Multi‐Thresholding‐Based Discriminative Neural Classifier for Detection of Retinoblastoma Using CNN Models. BioMed Research International, 2023, Article ID: 5803661. https://doi.org/10.1155/2023/5803661
|
[93]
|
Fu, R., Leader, J.K., Pradeep, T., Shi, J., Meng, X., Zhang, Y., et al. (2021) Automated Delineation of Orbital Abscess Depicted on CT Scan Using Deep Learning. Medical Physics, 48, 3721-3729. https://doi.org/10.1002/mp.14907
|
[94]
|
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118. https://doi.org/10.1038/nature21056
|
[95]
|
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al. (2017) A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005
|
[96]
|
Lin, L., Lu, Y.M. and Ma, S.S. (2021) Efficacy of Ranibizumab Combined with Fundus Laser in the Treatment of Diabetic Retinopathy. Practical Medical Journal, 37, 2660-2664.
|
[97]
|
Fu, M., Yi, Z.H. and Chen, C.Z. (2022) Research Progress of Targeted Retinal Photocoagulation for Diabetic Retinopathy. International Journal of Ophthalmology, 22, 579 582.
|
[98]
|
Amadi-Obi, A., Yu, C., Liu, X., Mahdi, R.M., Clarke, G.L., Nussenblatt, R.B., et al. (2007) TH17 Cells Contribute to Uveitis and Scleritis and Are Expanded by IL-2 and Inhibited by Il-27/Stat1. Nature Medicine, 13, 711-718. https://doi.org/10.1038/nm1585
|
[99]
|
Mesquida, M., Leszczynska, A., Llorenç, V. and Adán, A. (2014) Interleukin-6 Blockade in Ocular Inflammatory Diseases. Clinical and Experimental Immunology, 176, 301-309. https://doi.org/10.1111/cei.12295
|
[100]
|
Durrant, J.D. and McCammon, J.A. (2010) Nnscore: A Neural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes. Journal of Chemical Information and Modeling, 50, 1865-1871. https://doi.org/10.1021/ci100244v
|
[101]
|
Brylinski, M., Lee, S.Y., Zhou, H. and Skolnick, J. (2011) The Utility of Geometrical and Chemical Restraint Information Extracted from Predicted Ligand-Binding Sites in Protein Structure Refinement. Journal of Structural Biology, 173, 558-569. https://doi.org/10.1016/j.jsb.2010.09.009
|
[102]
|
Kovacs, K., Wagley, S., Quirk, M.T., Ceron, O.M., Silva, P.A., Singh, R.J., et al. (2012) Pharmacokinetic Study of Vitreous and Serum Concentrations of Triamcinolone Acetonide after Posterior Sub-Tenon’s Injection. American Journal of Ophthalmology, 153, 939-948. https://doi.org/10.1016/j.ajo.2011.10.021
|
[103]
|
Missel, P.J., Horner, M. and Muralikrishnan, R. (2010) Simulating Dissolution of Intravitreal Triamcinolone Acetonide Suspensions in an Anatomically Accurate Rabbit Eye Model. Pharmaceutical Research, 27, 1530-1546. https://doi.org/10.1007/s11095-010-0163-1
|
[104]
|
Liu, X.F., Sun, X.Y. and Zhu, X. (2021) Application Status and Challenges of Artificial Intelligence in New Drug Research and Development. Pharmaceutical Progress, 45, 494-501.
|