[1]
|
Foley, A. and Olabi, A.G. (2017) Renewable Energy Technology Developments, Trends and Policy Implications That Can Underpin the Drive for Global Climate Change. Renewable and Sustainable Energy Reviews, 68, 1112-1114. https://doi.org/10.1016/j.rser.2016.12.065
|
[2]
|
Amrouche, S.O., Rekioua, D., Rekioua, T. and Bacha, S. (2016) Overview of Energy Storage in Renewable Energy Systems. International Journal of Hydrogen Energy, 41, 20914-20927. https://doi.org/10.1016/j.ijhydene.2016.06.243
|
[3]
|
Markovic, N.M. (2013) Interfacing Electrochemistry. Nature Materials, 12, 101-102. https://doi.org/10.1038/nmat3554
|
[4]
|
Renssen, S. (2020) The Hydrogen Solution? Nature Climate Change, 10, 799-801. https://doi.org/10.1038/s41558-020-0891-0
|
[5]
|
Kelly, N.A. (2014) Hydrogen Production by Water Electrolysis. In: Basile, A. and Iulianelli, A., Eds., Advances in Hydrogen Production, Storage and Distribution, Elsevier, Amsterdam, 159-185. https://doi.org/10.1533/9780857097736.2.159
|
[6]
|
Ezaki, H., Morinaga, M. and Watanabe, S. (1993) Hydrogen Overpotential for Transition Metals and Alloys, and Its Interpretation Using an Electronic Model. Electrochimica Acta, 38, 557-564. https://doi.org/10.1016/0013-4686(93)85012-N
|
[7]
|
Eftekhari, A. (2017) Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 42, 11053-11077. https://doi.org/10.1016/j.ijhydene.2017.02.125
|
[8]
|
Salonen, L.M., Petrovykh, D.Y. and Kolen’ko, Y.V. (2021) Sustainable Catalysts for Water Electrolysis: Selected Strategies for Reduction and Replacement of Platinum-Group Metals. Materials Today Sustainability, 11-12, Article ID: 100060. https://doi.org/10.1016/j.mtsust.2021.100060
|
[9]
|
Zheng, Y., Jiao, Y., Jaroniec, M. and Qiao, S.Z. (2015) Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie International Edition, 54, 52-65. https://doi.org/10.1002/anie.201407031
|
[10]
|
Gong, M., Wang, D.Y., Chen, C.C., Hwang, B.J. and Dai, H. (2016) A Mini Review on Nickel-Based Electrocatalysts for Alkaline Hydrogen Evolution Reaction. Nano Research, 9, 28-46. https://doi.org/10.1007/s12274-015-0965-x
|
[11]
|
Faber, M.S., Lukowski, M.A., Ding, Q., Kaiser, N.S. and Jin, S. (2014) Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. The Journal of Physical Chemistry C, 118, 21347-21356. https://doi.org/10.1021/jp506288w
|
[12]
|
Xiao, P., Chen, W. and Wang, X. (2015) A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 5, Article ID: 1500985. https://doi.org/10.1002/aenm.201500985
|
[13]
|
Du, H., Kong, R.M., Guo, X., Qu, F. and Li, J. (2018) Recent Progress in Transition Metal Phosphides with Enhanced Electrocatalysis for Hydrogen Evolution. Nanoscale, 10, 21617-21624. https://doi.org/10.1039/C8NR07891B
|
[14]
|
Wang, Y., Kong, B., Zhao, D., Wang, H. and Selomulya, C. (2017) Strategies for Developing Transition Metal Phosphides as Heterogeneous Electrocatalysts for Water Splitting. Nano Today, 15, 26-55. https://doi.org/10.1016/j.nantod.2017.06.006
|
[15]
|
Yu, F., Zhou, H., Huang, Y., Sun, J., Qin, F., Bao, J., Goddard, W.A., Chen, S. and Ren, Z. (2018) High-Performance Bifunctional Porous Non-Noble Metal Phosphide Catalyst for Overall Water Splitting. Nature Communications, 9, Article No. 2551. https://doi.org/10.1038/s41467-018-04746-z
|
[16]
|
Ray, A., Sultana, S., Paramanik, L. and Parida, K.M. (2020) Recent Advances in Phase, Size, and Morphology-Oriented Nanostructured Nickel Phosphide for Overall Water Splitting. Journal of Materials Chemistry A, 8, 19196-19245. https://doi.org/10.1039/D0TA05797E
|
[17]
|
Jin, M., Zhang, X., Shi, R., Lian, Q., Niu, S., Peng, O., Wang, Q. and Cheng, C. (2021) Hierarchical CoP@ Ni2P Catalysts for PH-Universal Hydrogen Evolution at High Current Density. Applied Catalysis B: Environmental, 296, Article ID: 120350. https://doi.org/10.1016/j.apcatb.2021.120350
|
[18]
|
Wang, F., Li, Y., Shifa, T.A., Liu, K., Wang, F., Wang, Z., Xu, P., Wang, Q. and He, J. (2016) Selenium-Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation. Angewandte Chemie, 55, 6919-6924. https://doi.org/10.1002/anie.201602802
|
[19]
|
Chen, W.F., Muckermana, J.T. and Fujita, E. (2013) Recent Developments in Transition Metal Carbides and Nitrides as Hydrogen Evolution Electrocatalysts. Chemical Communications, 49, 8896-8909. https://doi.org/10.1039/c3cc44076a
|
[20]
|
Brown, D.E., Mahmood, M.N., Man, M.C.M. and Turner, A.K. (1984) Preparation and Characterization of Low Overvoltage Transition Metal Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solutions. Electrochimica Acta, 29, 1551-1556. https://doi.org/10.1016/0013-4686(84)85008-2
|
[21]
|
Safizadeh, F., Ghali, E. and Houlachi, G. (2015) Electrocatalysis Developments for Hydrogen Evolution Reaction in Alkaline Solutions—A Review. International Journal of Hydrogen Energy, 40, 256-274. https://doi.org/10.1016/j.ijhydene.2014.10.109
|
[22]
|
Lv, H., Xi, Z., Chen, Z., Guo, S., Yu, Y., Zhu, W., Li, Q., Zhang, X., Pan, M., Lu, G., Mu, S. and Sun, S. (2015) A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-Like Activity for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 137, 5859-5862. https://doi.org/10.1021/jacs.5b01100
|
[23]
|
Li, L., Zhang, G., Wang, B. Yang, T. and Yang, S. (2020) Electrochemical Formation of PtRu Bimetallic Nanoparticles for Highly Efficient and PH-Universal Hydrogen Evolution Reaction. Journal of Materials Chemistry A, 8, 2090-2098. https://doi.org/10.1039/C9TA12300H
|
[24]
|
Park, J., Koo, B., Yoon, K.Y., Hwang, Y., Kang, M., Park, J.G. and Hyeon, T. (2005) Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of Continuously Delivered Metal-Phosphine Complexes Using a Syringe Pump. Journal of the American Chemical Society, 127, 8433-8440. https://doi.org/10.1021/ja0427496
|
[25]
|
Liu, P., Zhang, Z.X., Jun, S.W., Zhu, Y.L. and. Li, Y.X. (2019) Controlled Synthesis of Nickel Phosphide Nanoparticles with Pure-Phase Ni2P and Ni12P5 for Hydrogenation of Nitrobenzene. Reaction Kinetics, Mechanisms and Catalysis, 126, 453-461. https://doi.org/10.1007/s11144-018-1496-8
|
[26]
|
Wang, X., Kolen’ko, Y.V. and Liu, L. (2015) Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution. Chemical Communications, 51, 6738-6741. https://doi.org/10.1039/C5CC00370A
|
[27]
|
Liu, Z., Huang, X., Zhu, Z. and Dai, J. (2010) A Simple Mild Hydrothermal Route for the Synthesis of Nickel Phosphide Powders. Ceramics International, 36, 1155-1158. https://doi.org/10.1016/j.ceramint.2009.12.015
|
[28]
|
Zhang, G., Xu, Q., Liu, Y., Qin, Q., Zhang, J., Qi, K., Chen, J., Wang, Z., Zheng, K., Świerczek, K. and Zheng, W. (2020) Red Phosphorus as Self-Template to Hierarchical Nanoporous Nickel Phosphides toward Enhanced Electrocatalytic Activity for Oxygen Evolution Reaction. Electrochimica Acta, 332, Article ID: 135500. https://doi.org/10.1016/j.electacta.2019.135500
|
[29]
|
Xiao, J., Lv, Q., Zhang, Y., Zhang, Z. and Wang, S. (2016) One-Step Synthesis of Nickel Phosphide Nanowire Array Supported on Nickel Foam with Enhanced Electrocatalytic Water Splitting Performance. RSC Advances, 6, 107859-107864. https://doi.org/10.1039/C6RA20737E
|
[30]
|
Wang, X., Kolen’ko, Y.V., Bao, X.Q., Kovnir, K. and Liu, L. (2015) One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie, 54, 8188-8192. https://doi.org/10.1002/anie.201502577
|
[31]
|
Wang, X., Li, W., Xiong, D., Petrovykh, D.Y. and Liu, L. (2016) Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 26, 4067-4077. https://doi.org/10.1002/adfm.201505509
|
[32]
|
Wang, X., Li, W., Xiong, D. and Liu, L. (2016) Fast Fabrication of Self-Supported Porous Nickel Phosphide Foam for Efficient, Durable Oxygen Evolution and Overall Water Splitting. Journal of Materials Chemistry A, 4, 5639-5646. https://doi.org/10.1039/C5TA10317G
|
[33]
|
Xing, J., Zou, Z., Guo, K. and Xu, C. (2018) The Effect of Phosphating Time on the Electrocatalytic Activity of Nickel Phosphide Nanorod Arrays Grown on Ni Foam. Journal of Materials Research, 33, 556-567. https://doi.org/10.1557/jmr.2017.399
|
[34]
|
Bains, W., Petkowski, J.J., Silva, C.S. and Seager, S. (2019) Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments. Astrobiology, 19, 885-902. https://doi.org/10.1089/ast.2018.1958
|
[35]
|
Li, J., Li, J., Zhou, X., Xia, Z., Gao, W., Ma, Y. and Qu, Y. (2016) Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces, 8, 10826-10834. https://doi.org/10.1021/acsami.6b00731
|
[36]
|
Zhou, K., Zhou, W., Yang, L., Lu, J., Cheng, S., Mai, W., Tang, Z., Li. L. and Chen, S. (2015) Ultrahigh-Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach. Advanced Functional Materials, 25, 7530-7538. https://doi.org/10.1002/adfm.201503662
|
[37]
|
Wu, M., Bai, J., Wang, Y., Wang, A., Lin, X., Wang, L., Shen, Y., Wang, Z., Hagfeldt, A. and Ma, T. (2012) High-Performance Phosphide/Carbon Counter Electrode for Both Iodide and Organic Redox Couples in Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 22, 11121-11127. https://doi.org/10.1039/c2jm30832k
|
[38]
|
Lu, Y., Gua, C.D., Ge, X., Zhang, H., Huang, S., Zhao, X.Y., Wang, X.L., Tu, J.P. and Mao, S.X. (2013) Growth of Nickel Phosphide Films as Anodes for Lithium-Ion Batteries: Based on a Novel Method for Synthesis of Nickel Films using Ionic Liquids. Electrochimica Acta, 112, 212-220. https://doi.org/10.1016/j.electacta.2013.09.035
|
[39]
|
Fullenwarth, J., Darwiche, A., Soares, A., Donnadieu, B. and Monconduit, L. (2014) NiP3: A Promising Negative Electrode for Li-and Na-Ion Batteries. Journal of Materials Chemistry A, 2, 2050-2059. https://doi.org/10.1039/C3TA13976J
|
[40]
|
Lin, Y., Sun, K., Liu, S., Chen, X., Cheng, Y., Cheong, W.C., Chen, Z., Zheng, L., Zhang, J., Li, X., Pan, Y. and Chen, C. (2019) Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide PH Hydrogen Evolution Electrocatalysis and Supercapacitor. Advanced Energy Materials, 9, Article ID: 1901213. https://doi.org/10.1002/aenm.201901213
|
[41]
|
Zhang, N., Li, Y., Xu, J., Li, J., Wei, B., Ding, Y., Amorim, I., Thomas, R., Thalluri, S.M., Liu, Y., Yu, G. and Liu, L. (2019) High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano, 13, 10612-10621. https://doi.org/10.1021/acsnano.9b04810
|
[42]
|
Vitry, V., Sens, A. and Delaunois, F. (2014) Comparison of Various Electroless Nickel Coatings on Steel: Structure, Hardness and Abrasion Resistance. Materials Science Forum, 783-786, 1405-1413. https://doi.org/10.4028/www.scientific.net/MSF.783-786.1405
|
[43]
|
Mandich, N.V. and Krulik, G.A. (1992) The Evolution of a Process: 50 Years of Electroless Nickel. Metal Finishing, 90, 25-27.
|
[44]
|
Karuppusamy, K. and Anantharam, R. (1992) Pit-Free Nickel Electroplating. Metal Finishing, 90, 15-19.
|
[45]
|
Okamoto, Y., Nitta, Y., Imanaka, T. and Teranishi, S. (1979) Surface Characterisation of Nickel Boride and Nickel Phosphide Catalysts by X-Ray Photoelectron Spectroscopy. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75, 2027-2039. https://doi.org/10.1039/f19797502027
|
[46]
|
Tiwari, A.P., Lee, K., Kim, K., Kim, J., Novak, T.G. and Jeon, S. (2020) Conformally Coated Nickel Phosphide on 3D, Ordered Nanoporous Nickel for Highly Active and Durable Hydrogen Evolution. ACS Sustainable Chemistry & Engineering, 8, 17116-17123. https://doi.org/10.1021/acssuschemeng.0c05192
|
[47]
|
Sun, T., Dong, J., Huang, Y., Ran, W., Chena, J. and Xu, L. (2018) Highly Active and Stable Electrocatalyst of Ni2P Nanoparticles Supported on 3D Ordered Macro-/Mesoporous Co-N-Doped Carbon for Acidic Hydrogen Evolution Reaction. Journal of Materials Chemistry A, 6, 12751-12758. https://doi.org/10.1039/C8TA03672A
|
[48]
|
Ochs, D., Dieckhoff, S. and Cord, B. (2000) Characterization of Hard Disk Substrates (NiP/Al, Glass) Using XPS. Surface and Interface Analysis, 30, 12-15. https://doi.org/10.1002/1096-9918(200008)30:1<12::AID-SIA770>3.0.CO;2-B
|
[49]
|
NIST X-Ray Photoelectron Spectroscopy Database. https://srdata.nist.gov/xps/
|