|
[1]
|
Piluzza, G., Delogu, G., Cabras, A., Marceddu, S. and Bullitta, S. (2013) Differentiation between Fiber and Drug Types of Hemp (Cannabis sativa L.) from a Collection of Wild and Domesticated Accessions. Genetic Resources and Crop Evolution, 60, 2331-2342. [Google Scholar] [CrossRef]
|
|
[2]
|
Pisanti, S. and Bifulco, M. (2018) Medical Cannabis: A Plurimillenial History of an Evergreen. Journal of Cellular Physiology, 234, 8342-8351. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Andre, C.M., Hausman, J.F. and Guerriero, G. (2016) Cannabis Sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science, 7, Article 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Taura, F., Sirikantaramas, S., Shoyama, Y., Shoyama, Y. and Morimoto, S. (2007) Phytocannabinoids in Cannabis Sativa: Recent Studies on Biosynthetic Enzymes. Chemistry and Biodiversity, 4, 1649-1663. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gaoni, Y. and Mechoulam, R. (1964) Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish. Journal of American Chemical Society, 86, 1646-1647. [Google Scholar] [CrossRef]
|
|
[6]
|
Degenhardt, L., Coffey, C., Carlin, J.B., Swift, W., Moore, E. and Patton, G.C. (2010) Outcomes of Occasional Cannabis Use in Adolescence: 10-Year Follow-Up Study in Victoria, Australia. British Journal of Psychiatry, 196, 290-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Queirolo, R., Repetto, L., Sotto, B. and Álvarez, E. (2023) Explaining the Impact of Legal Access to Cannabis on Attitudes toward Users. International Journal of Public Opinion Research, 35, edad010. [Google Scholar] [CrossRef]
|
|
[8]
|
Manthey, J., Jacobsen, B., Hayer, T., Kalke, J., López-Pelayo, H., Pons-Cabrera, M.T., Verthein, U. and Rosenkranz, M. (2023) The Impact of Legal Cannabis Availability on Cannabis Use and Health Outcomes: A Systematic Review. International Journal of Drug Policy, 116, Article ID: 104039. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Booth, J.K. and Bohlmann, J. (2019) Terpenes in Cannabis Sativa—From Plant Genome to Humans. Plant Science, 284, 67-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lowe, H., Steele, B., Bryant, J., Toyang, N. and Ngwa, W. (2021) Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential. Plants, 10, Article 400. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mechoulam, R., Hanuš, L.O., Pertwee, R. and Howlett, A.C. (2014) Early Phytocannabinoid Chemistry to Endocannabinoids and Beyond. Nature Reviews Neuroscience, 15, 757-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pertwee, R. (1988) The Cental Neuropharmacology of Psycotropic Cannabinoids. Pharmacology and Theurapeutics, 36, 189-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bueno, J., Leuer, E., Kearney, M., Green, E.H. and Greenbaum, E.A. (2020) The Preservation and Augmentation of Volatile Terpenes in Cannabis Inflorescence. Journal of Cannabis Research, 2, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Milay, L., Berman, P., Shapira, A., Guberman, O. and Meiri, D. (2020) Metabolic Profiling of Cannabis Secondary Metabolites for Evaluation of Optimal Postharvest Storage Conditions. Frontiers in Plant Science, 11, Article 583605. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mazzetti, C., Ferri, E., Pozzi, M. and Labra, M. (2020) Quantification of the Content of Cannabidiol in Commercially Available E-Liquids and Studies on Their Thermal and Photo-Stability. Scientific Reports, 10, Article 3697. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Grafström, K., Andersson, K., Pettersson, N., Dalgaard, J. and Dunne, S.J. (2019) Effects of Long-Term Storage on Secondary Metabolite Profiles of Cannabis Resin. Forensic Science International, 301, 331-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Mahmud, M.M.C., Keast, R., Mohebbi, M. and Shellie, R.A. (2022) Identifying Aroma-Active Compounds in Coffee-Flavored Dairy Beverages. Journal of Food Science, 87, 982-997. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Marin, K., Pozrl, T., Zlatič, E. and Plestenjak, A. (2008) A New Aroma Index to Determine the Aroma Quality of Roasted and Ground Coffee during Storage. Food Technology and Biotechnology, 46, 442-447.
|
|
[19]
|
Ebadi, M., Sefidkon, F., Azizi, M. and Ahmadi, N. (2016) Packaging Methods and Storage Duration Affect Essential Oil Content and Composition of Lemon Verbena (Lippia citriodora Kunth). Food Science and Nutrition, 5, 588-595. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Agarwal, D., Mui, L., Aldridge, E., Mottram, R., McKinney, J. and Fisk, I.D. (2018) The Impact of Nitrogen Gas Flushing on the Stability of Seasonings: Volatile Compounds and Sensory Perception of Cheese & Onion Seasoned Potato Crisps. Food & Function, 9, 4730-4741. [Google Scholar] [CrossRef]
|
|
[21]
|
Lloyd, M.A., Hess, S. and Drake, M. (2009) Effect of Nitrogen Flushing and Storage Temperature on Flavor and Shelf-Life of Whole Milk Powder. Journal of Dairy Science, 92, 2409-2422. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Utama, N.A. (2020) Usage of Heat Treatment and Modified Atmosphere Packaging to Maintain Fruit Firmness of Fresh Cut Cavendish Banana (Musa cavendishii). Planta Tropika: Jurnal Agrosains, 8, 126-132. [Google Scholar] [CrossRef]
|
|
[23]
|
Davies, A.R. (1995) Advances in Modified-Atmosphere Packaging. Springer eBooks, New York, 304-320. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhao, Y., Wells, J.H. and McMillin, K. (1994) Applications of Dynamic Modified Atmosphere Packaging Systems for Fresh Red Meats: Review. Journal of Muscle Foods, 5, 299-328. [Google Scholar] [CrossRef]
|
|
[25]
|
Stammen, K., Gerdes, D.L. and Caporaso, F. (1990) Modified Atmosphere Packaging of Seafood. Critical Reviews in Food Science and Nutrition, 29, 301-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Caleb, O.J., Mahajan, P.V., Al-Said, F.A. and Opara, U.L. (2012) Modified Atmosphere Packaging Technology of Fresh and Fresh-Cut Produce and the Microbial Consequences—A Review. Food and Bioprocess Technology, 6, 303-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Spencer, K.C. and Humphreys, D.J. (2002) Argon Packaging and Processing Preserves and Enhances Flavor, Freshness, and Shelf Life of Foods. ACS Symposium Series, 836, 270-291. [Google Scholar] [CrossRef]
|
|
[28]
|
Labuza, T.P. and Dugan, L.R. (1971) Kinetics of Lipid Oxidation in Foods. CRC Critical Reviews in Food Technology, 2, 355-405. [Google Scholar] [CrossRef]
|
|
[29]
|
Marasca, E., Greetham, D., Herring, S. and Fisk, I.D. (2016) Impact of Nitrogen Flushing and Oil Choice on the Progression of Lipid Oxidation in Unwashed Fried Sliced Potato Crisps. Food Chemistry, 199, 81-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kitabayashi, K., Tanimoto, S., Kikutani, H., Ohkita, T., Mabuchi, R. and Shimoda, M. (2018) Effect of Nitrogen Gas Packaging on Odor Development in Yellowtail Seriola Quinqueradiata Muscle during Ice Storage. Fisheries Science, 85, 247-257. [Google Scholar] [CrossRef]
|
|
[31]
|
Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F.J., Zhang, W. and Lorenzo, J.M. (2019) A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants, 8, Article 429. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Boz, Z., Welt, B.W., Brecht, J.K., Pelletier, W., McLamore, E., Kiker, G.A. and Butler, J.A. (2018) Review of Challenges and Advances in Modification of Food Package Headspace Gases. Journal of Applied Packaging Research, 10, 62-97.
|
|
[33]
|
Mangaraj, S., Goswami, T.K. and Mahajan, P.V. (2009) Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Engineering Reviews, 1, 133-158. [Google Scholar] [CrossRef]
|
|
[34]
|
Shewfelt, R.L. (1999) What Is Quality? Postharvest Biology and Technology, 15, 197-200. [Google Scholar] [CrossRef]
|
|
[35]
|
Fillion, L. and Kilcast, D. (2002) Consumer Perception of Crispness and Crunchiness in Fruits and Vegetables. Food Quality and Preference, 13, 23-29. [Google Scholar] [CrossRef]
|
|
[36]
|
Parry, R.T. (1993) Principles and Applications of Modified Atmospheric Packaging. Springer Science Business Media, Dordrecht.
|
|
[37]
|
Air Liquid (2024) Nitrogen. https://www.airliquide.ca/nitrogen/category/IG-Nitrogen
|
|
[38]
|
Guzmán, M. (2003) Cannabinoids: Potential Anticancer Agents. Nature Reviews Cancer, 3, 745-755. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Russo, E.B. and Marcu, J. (2017) Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Advances in Pharmacology, 80, 67-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Russo, E.B. (2011) Taming THC: A Potential Cannabis Synergy and Phytocannabinoid-Terpenoid Entourage Effects. British Journal of Pharmacology, 163, 1344-1364. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Johnson, H.B. (1975) Plant Pubescence: An Ecological Perspective. Botanical Review, 41, 233-258. [Google Scholar] [CrossRef]
|
|
[42]
|
Mahlberg, P.G. and Kim, E. (1991) Cuticle Development on Glandular Trichomes of Cannabis Sativa (Cannabaceae). American Journal of Botany, 78, 1113-1122. [Google Scholar] [CrossRef]
|
|
[43]
|
Livingston, S.J., Quilichini, T.D., Booth, J.K., Wong, D., Rensing, K.H., Laflamme-Yonkman, J., Castellarin, S.D., Bohlmann, J., Page, J.E. and Samuels, A.L. (2019) Cannabis Glandular Trichomes Alter Morphology and Metabolite Content during Flower Maturation. Plant Journal, 101, 37-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Livingston, S.J., Bae, E.J.A., Unda, F., Hahn, M.G., Mansfield, S.D., Page, J.E. and Samuels, A.L. (2021) Cannabis Glandular Trichome Cell Walls Undergo Remodeling to Store Specialized Metabolites. Plant and Cell Physiology, 62, 1944-1962. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Gülck, T. and Møller, B.L. (2020) Phytocannabinoids: Origins and Biosynthesis. Trends in Plant Science, 25, 985-1004. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hanuš, L.O., Meyer, S.M., Muñoz, E., Taglialatela-Scafati, O. and Appendino, G. (2016) Phytocannabinoids: A Unified Critical Inventory. Natural Product Reports, 33, 1357-1392. [Google Scholar] [CrossRef]
|
|
[47]
|
Happyana, N. and Kayser, O. (2016) Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR. Planta Medica, 82, 1217-1223. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sirikantaramas, S., Taura, F., Tanaka, Y., Ishikawa, Y., Morimoto, S. and Shoyama, Y. (2005) Tetrahydrocannabinolic Acid Synthase, the Enzyme Controlling Marijuana Psychoactivity, Is Secreted into the Storage Cavity of the Glandular Trichomes. Plant and Cell Physiology, 46, 1578-1582. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Flores-Sanchez, I.J. and Verpoorte, R. (2008) Secondary Metabolism in Cannabis. Phytochemistry Reviews, 7, 615-639. [Google Scholar] [CrossRef]
|
|
[50]
|
Berman, P., Futoran, K., Lewitus, G.M., Mukha, D., Benami, M., Shlomi, T. and Meiri, D. (2018) A New ESI-LC/MS Approach for Comprehensive Metabolic Profiling of Phytocannabinoids in Cannabis. Scientific Reports, 8, Article No. 14280. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Huestis, M.A. (2007) Human Cannabinoid Pharmacokinetics. Chemistry & Biodiversity, 4, 1770-1804. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ramesh, J. (2020) Identification of Psychoactive Metabolites from Cannabis Sativa, Its Smoke, and Other Phytocannabinoids Using Machine Learning and Multivariate Methods. ACS Omega, 5, 281-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Jin, D., Jin, S. and Chen, J. (2019) Cannabis Indoor Growing Conditions, Management Practices, and Post-Harvest Treatment: A Review. American Journal of Plant Sciences, 10, 925-946. [Google Scholar] [CrossRef]
|
|
[54]
|
Rupasinghe, H.V., Davis, A., Kumar, S.K., Murray, B. and Zheljazkov, V.D. (2020) Industrial Hemp (Cannabis sativa Subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules, 25, Article 4078. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Shapira, A., Berman, P., Futoran, K., Guberman, O. and Meiri, D. (2019) Tandem Mass Spectrometric Quantification of 93 Terpenoids in Cannabis Using Static Headspace Injections. Analytical Chemistry, 91, 11425-11432. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Bedini, S., Flamini, G., Cosci, F., Ascrizzi, R., Benelli, G. and Conti, B. (2016) Cannabis sativa and Humulus lupulus Essential Oils as Novel Control Tools against the Invasive Mosquito Aedes albopictus and Fresh Water Snail Physella acuta. Industrial Crops and Products, 85, 318-323. [Google Scholar] [CrossRef]
|
|
[57]
|
Wanas, A.S., Radwan, M.M., Chandra, S., Lata, H., Mehmedic, Z., Alı, A., Başer, K.H.C., Demirci, B. and ElSohly, M.A. (2020) Chemical Composition of Volatile Oils of Fresh and Air-Dried Buds of Cannabis Chemovars, Their Insecticidal and Repellent Activities. Natural Product Communications, 15, 1-7. [Google Scholar] [CrossRef]
|
|
[58]
|
Aliferis, K.A. and Bernard-Perron, D. (2020) Cannabinomics: Application of Metabolomics in Cannabis (Cannabis sativa L.) Research and Development. Frontiers in Plant Science, 11, Article 554. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Turek, C. and Stintzing, F.C. (2013) Stability of Essential Oils: A Review. Comprehensive Reviews in Food Science and Food Safety, 12, 40-53. [Google Scholar] [CrossRef]
|
|
[60]
|
Calvi, L., Pentimalli, D., Panseri, S., Giupponi, L., Gelmini, F., Beretta, G., Vitali, D., Bruno, M., Zilio, E., Pavlovic, R. and Giorgi, A. (2018) Comprehensive Quality Evaluation of Medical Cannabis sativa L. Inflorescence and Macerated Oils Based on HS-SPME Coupled to GC-MS and LC-HRMS (q-Exactive Orbitrap®) Approach. Journal of Pharmaceutical and Biomedical Analysis, 150, 208-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Pichersky, E. and Raguso, R.A. (2016) Why Do Plants Produce so Many Terpenoid Compounds? New Phytologist, 220, 692-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Nuutinen, T. (2018) Medicinal Properties of Terpenes Found in Cannabis sativa and Humulus lupulus. European Journal of Medicinal Chemistry, 157, 198-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Cox-Georgian, D., Ramadoss, N., Dona, C. and Basu, C. (2019) Therapeutic and Medicinal Uses of Terpenes. In: Joshee, N., Dhekney, S. and Parajuli, P., Eds., Medicinal Plants, Springer, Cham, 333-359. [Google Scholar] [CrossRef]
|
|
[64]
|
Hammond, C.T. and Mahlberg, P.G. (1978) Ultrastructural Development of Capitate Glandular Hairs of Cannabis Sativa L. Cannabaceae). American Journal of Botany, 65, 140-151. [Google Scholar] [CrossRef]
|
|
[65]
|
Tissier, A., Morgan, J.A. and Dudareva, N. (2017) Plant Volatiles: Going ‘In’ But Not ‘Out’ of Trichome Cavities. Trends in Plant Science, 22, 930-938. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Lara, I., Belge, B. and Goulão, L.F. (2015) A Focus on the Biosynthesis and Composition of Cuticle in Fruits. Journal of Agricultural and Food Chemistry, 63, 4005-4019. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Skrzydeł, J., Borowska-Wykręt, D. and Kwiatkowska, D. (2021) Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. International Journal of Molecular Sciences, 22, Article 4160. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Reynoud, N., Petit, J., Brès, C., Lahaye, M., Rothan, C., Marion, D. and Bakan, B. (2021) The Complex Architecture of Plant Cuticles and Its Relation to Multiple Biological Functions. Frontiers in Plant Science, 12, Article 782773. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Yeats, T.H. and Rose, J.K.C. (2013) The Formation and Function of Plant Cuticles. Plant Physiology, 163, 5-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Pollard, M., Beisson, F., Li, Y. and Ohlrogge, J.B. (2008) Building Lipid Barriers: Biosynthesis of Cutin and Suberin. Trends in Plant Science, 13, 236-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Kunst, L. and Samuels, L. (2009) Plant Cuticles Shine: Advances in Wax Biosynthesis and Export. Current Opinion in Plant Biology, 12, 721-727. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Fairbairn, J., Liebmann, J.A. and Rowan, M.G. (1976) The Stability of Cannabis and Its Preparations on Storage. Journal of Pharmacy and Pharmacology, 28, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Lindholst, C. (2010) Long Term Stability of Cannabis Resin and Cannabis Extracts. Australian Journal of Forensic Sciences, 42, 181-190. [Google Scholar] [CrossRef]
|
|
[74]
|
Trofin, I.G., Dabija, G., Vãireanu, I. and Filipescu, L. (2012) The Influence of Long-Term Storage Conditions on the Stability of Cannabinoids Derived from Cannabis Resin. Revista de Chimie, 63, 422-427.
|
|
[75]
|
Carbone, M., Castelluccio, F., Daniele, A., Sutton, A., Ligresti, A., Di Marzo, V. and Gavagnin, M. (2010) Chemical Characterisation of Oxidative Degradation Products of Δ9-THC. Tetrahedron, 66, 9497-9501. [Google Scholar] [CrossRef]
|
|
[76]
|
Bueno, J., Alborzi, S. and Greenbaum, E.A. (2023) Vapor Phase Terpenes Mitigate Oxidative Degradation of Cannabis Sativa Inflorescence Cannabinoid Content in an Accelerated Stability Study. Cannabis and Cannabinoid Research, 8, 887-898. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Turner, C.E., Hadley, K.W., Fetterman, P.S., Doorenbos, N.J., Quimby, M.W. and Waller, C.W. (1973) Constituents of Cannabis sativa L. IV: Stability of Cannabinoids in Stored Plant Material. Journal of Pharmaceutical Sciences, 62, 1601-1605. [Google Scholar] [CrossRef] [PubMed]
|