[1]
|
Hendrickson, H., Slechta, E.S., Bergthorsson, U., Andersson, D.I. and Roth, J.R. (2002) Amplification-Mutagenesis: Evidence That “Directed” Adaptive Mutation and General Hypermutability Result from Growth with a Selected Gene Amplification. Proceedings of the National Academy of Sciences of the United States of America, 99, 2164-2169. https://www.pnas.org/doi/10.1073/pnas.032680899
|
[2]
|
Albertson, D.G. (2006) Gene Amplification in Cancer. Trend in Genetics, 22, 447-455.
https://pubmed.ncbi.nlm.nih.gov/16787682/
|
[3]
|
Pierotti, M.A., Sozzi, G. and Croce, C.M. (2003) Holland-Frei Cancer Medicine. 6th Edition, BC Decker, Hamilton. https://www.ncbi.nlm.nih.gov/books/NBK12538/
|
[4]
|
Matsui, A., Ihara, T., Suda, H., Mikami, H. and Semba, K. (2013) Gene Amplification: Mechanisms and Involvement in Cancer. BioMolecular Concepts, 4, 567-582. https://www.degruyter.com/document/doi/10.1515/bmc-2013-0026/html?lang%3Den
https://doi.org/10.1515/bmc-2013-0026
|
[5]
|
Esteller, M. (2006) Epigenetics Provides a New Generation of Oncogenes and Tumour-Suppressor Genes. British Journal of Cancer, 94, 179-183.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361113/
https://doi.org/10.1038/sj.bjc.6602918
|
[6]
|
Nezami, M.A., Hager, S. and Garner, J. (2016) Epigenetic Tumor Response to Hypoxia: An Epimutation Pattern and a Method of Multi Targeted Epigenetic Therapy (MTET). Journal of Cancer Therapy, 7, 254-269.
https://www.scirp.org/journal/paperinformation.aspx?paperid=65475
https://doi.org/10.4236/jct.2016.74027
|
[7]
|
Harmych, S.J., Kumar, J., Bouni, M.E. and Chadee, D.N. (2020) Nicotine Inhibits MAPK Signaling and Spheroid Invasion in Ovarian Cancer Cells. Experimental Cell Research, 394, Article ID: 112167.
https://www.sciencedirect.com/science/article/abs/pii/S001448272030416X
https://doi.org/10.1016/j.yexcr.2020.112167
|
[8]
|
Usmani, S.E., et al. (2012) Transforming Growth Factor α Controls the Transition from Hypertrophic Cartilage to Bone during Endochondral Bone Growth. Bone, 51, 131-141. https://pubmed.ncbi.nlm.nih.gov/22575362/
https://doi.org/10.1016/j.bone.2012.04.012
|
[9]
|
Cussonneau, L., et al. (2021) Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle Atrophy in the Hibernating Bear. Cells, 10, Article 1873.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393865/
https://doi.org/10.3390/cells10081873
|
[10]
|
Baxter, E., Windloch, K., Gannon, F. and Lee, J.S. (2014) Epigenetic Regulation in Cancer Progression. Cell & Bioscience, 4, Article No. 45.
https://cellandbioscience.biomedcentral.com/articles/10.1186/2045-3701-4-45
https://doi.org/10.1186/2045-3701-4-45
|
[11]
|
Regan, J.L., Schumacher, D., Staudte, S., Steffen, A., Haybaeck, J., Keilholz, U., Schweiger, C., Golob-Schwarzl, N., Mumberg, D., Henderson, D., et al. (2017) Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells. Cell Reports, 21, 2813-2828.
https://doi.org/10.1016/j.celrep.2017.11.025
|
[12]
|
Ma, Y., Yu, W., Shrivastava, A., Alemi, F., Lankachandra, K., Srivastava, R.K. and Shankar, S. (2017) Sanguinarine Inhibits Pancreatic Cancer Stem Cell Characteristics by Inducing Oxidative Stress and Suppressing Sonic Hedgehog-Gli-Nanog Pathway. Carcinogenesis, 38, 1047-1056. https://doi.org/10.1093/carcin/bgx070
|
[13]
|
Nolan-Stevaux, O., Lau, J., Truitt, M.L., Chu, G.C., Hebrok, M., Fernández-Zapico, M.E. and Hanahan, D. (2009) GLI1 Is Regulated through Smoothened-Independent Mechanisms in Neoplastic Pancreatic Ducts and Mediates PDAC Cell Survival and Transformation. Genes & Development, 23, 24-36.
https://doi.org/10.1101/gad.1753809
|
[14]
|
Petrova, E., Matevossian, A. and Resh, M.D. (2015) Hedgehog Acyltransferase as a Target in Pancreatic Ductal Adenocarcinoma. Oncogene, 34, 263-268.
https://doi.org/10.1038/onc.2013.575
|
[15]
|
Razumilava, N., Gradilone, S.A., Smoot, R.L., Mertens, J.C., Bronk, S.F., Sirica, A.E. and Gores, G.J. (2014) Non-Canonical Hedgehog Signaling Contributes to Chemotaxis in Cholangiocarcinoma. Journal of Hepatology, 60, 599-605.
https://doi.org/10.1016/j.jhep.2013.11.005
|
[16]
|
Thayer, S.P., di Magliano, M.P., Heiser, P.W., Nielsen, C.M., Roberts, D.J., Lauwers, G.Y., Qi, Y.P., Gysin, S., Fernandez-del Castillo, C., Yajnik, V., et al. (2003) Hedgehog Is an Early and Late Mediator of Pancreatic Cancer Tumorigenesis. Nature, 425, 851-856. https://doi.org/10.1038/nature02009
|
[17]
|
Tian, H., Callahan, C.A., DuPree, K.J., Darbonne, W.C., Ahn, C.P., Scales, S.J. and de Sauvage, F.J. (2009) Hedgehog Signaling Is Restricted to the Stromal Compartment during Pancreatic Carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 4254-4259.
https://doi.org/10.1073/pnas.0813203106
|
[18]
|
Song, L., Chen, X., Gao, S., Zhang, C., Qu, C., Wang, P. and Liu, L. (2016) Ski Modulate the Characteristics of Pancreatic Cancer Stem Cells via Regulating Sonic Hedgehog Signaling Pathway. Tumor Biology, 37, 16115-16125.
https://doi.org/10.1007/s13277-016-5461-8
|
[19]
|
Gu, D., Liu, H., Su, G.H., Zhang, X., Chin-Sinex, H., Hanenberg, H., Mendonca, M.S., Shannon, H.E., Chiorean, E.G. and Xie, J. (2013) Combining Hedgehog Signaling Inhibition with Focal Irradiation on Reduction of Pancreatic Cancer Metastasis. Molecular Cancer Therapeutics, 12, 1038-1048.
https://doi.org/10.1158/1535-7163.MCT-12-1030
|
[20]
|
Huang, F.T., Zhuan-Sun, Y.X., Zhuang, Y.Y., Wei, S.L., Tang, J., Chen, W.B. and Zhang, S.N. (2012) Inhibition of Hedgehog Signaling Depresses Self-Renewal of Pancreatic Cancer Stem Cells and Reverses Chemoresistance. International Journal of Oncology, 41, 1707-1714. https://doi.org/10.3892/ijo.2012.1597
|
[21]
|
Song, L., Chen, X., Wang, P., Gao, S., Qu, C. and Liu, L. (2018) Effects of Baicalein on Pancreatic Cancer Stem Cells via Modulation of Sonic Hedgehog Pathway. Acta Biochimica et Biophysica Sinica, 50, 586-596. https://doi.org/10.1093/abbs/gmy045
|
[22]
|
Ercan, G., Karlitepe, A. and Ozpolat, B. (2017) Pancreatic Cancer Stem Cells and Therapeutic Approaches. Anticancer Research, 37, 2761-2775.
https://doi.org/10.21873/anticanres.11628
|
[23]
|
Lau, J., Kawahira, H. and Hebrok, M. (2006) Hedgehog Signaling in Pancreas Development and Disease. Cellular and Molecular Life Sciences CMLS, 63, 642-652.
https://doi.org/10.1007/s00018-005-5357-z
|
[24]
|
Martin, S., Sato, N., Dhara, S., Chang, R., Hustinx, S.R., Abe, T., Maitra, A. and Goggins, M. (2005) Aberrant Methylation of the Human Hedgehog Interacting Protein (HHIP) Gene in Pancreatic Neoplasms. Cancer Biology & Therapy, 4, 728-733.
https://doi.org/10.4161/cbt.4.7.1802
|
[25]
|
Feldmann, G., Dhara, S., Fendrich, V., Bedja, D., Beaty, R., Mullendore, M., Karikari, C., Alvarez, H., Iacobuzio-Donahue, C. and Jimeno, A. (2007) Blockade of Hedgehog Signaling Inhibits Pancreatic Cancer Invasion and Metastases: A New Paradigm for Combination Therapy in Solid Cancers. Cancer Research, 67, 2187-2196.
https://doi.org/10.1158/0008-5472.CAN-06-3281
|
[26]
|
Feldmann, G., Habbe, N., Dhara, S., Bisht, S., Alvarez, H., Fendrich, V., Beaty, R., Mullendore, M., Karikari, C. and Oullette, M.M. (2008) Hedgehog Inhibition Prolongs Survival in a Genetically Engineered Mouse Model of Pancreatic Cancer. Gut, 57, 1420-1430. https://doi.org/10.1136/gut.2007.148189
|
[27]
|
Ko, A.H., LoConte, N., Tempero, M.A., Walker, E.J., Kelley, R.K., Lewis, S., Chang, W.C., Kantoff, E., Vannier, M.W. and Catenacci, D.V. (2016) A Phase I Study of FOLFIRINOX plus IPI-926, A Hedgehog Pathway Inhibitor, For Advanced Pancreatic Adenocarcinoma. Pancreas, 45, 370-375.
https://doi.org/10.1097/MPA.0000000000000458
|
[28]
|
Catenacci, D.V., Junttila, M.R., Karrison, T., Bahary, N., Horiba, M.N., Nattam, S.R., Marsh, R., Wallace, J., Kozloff, M. and Rajdev, L. (2015) Randomized Phase Ib/II Study of Gemcitabine plus Placebo or Vismodegib, A Hedgehog Pathway in Hibitor, In Patients with Metastatic Pancreatic Cancer. Journal of Clinical Oncology, 33, 4284-4292. https://doi.org/10.1200/JCO.2015.62.8719
|
[29]
|
Kim, E.J., Sahai, V., Abel, E.V., Griffith, K.A., Greenson, J.K., Takebe, N., Khan, G.N., Blau, J.L., Balis, U.G. and Craig, R. (2014) Pilot Clinical Trial of Hedgehog Pathway Inhibitor GDC-0449 (Vismodegib) in Combination with Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma. Clinical Cancer Research, 20, 5937-5945.
https://doi.org/10.1158/1078-0432.CCR-14-1269
|
[30]
|
Szkandera, J., Kiesslich, T., Haybaeck, J., Gerger, A. and Pichler, M. (2013) Hedgehog Signaling Pathway in Ovarian Cancer. International Journal of Molecular Sciences, 14, 1179-1196. https://doi.org/10.3390/ijms14011179
|
[31]
|
Mukherjee, S., Frolova, N., Sadlonova, A., Novak, Z., Steg, A., Page, G.P., Welch, D.R., Lobo-Ruppert, S.M., Ruppert, J.M., Johnson, M.R., et al. (2006) Hedgehog Signaling and Response to Cyclopamine Differ in Epithelial and Stromal Cells in Benign Breast and Breast Cancer. Cancer Biology & Therapy, 5, 674-683.
https://doi.org/10.4161/cbt.5.6.2906
|
[32]
|
Di Mauro, C., Rosa, R., D’Amato, V., Ciciola, P., Servetto, A., Marciano, R., Orsini, R.C., Formisano, L., De Falco, S., Cicatiello, V., et al. (2017) Hedgehog Signalling Pathway Orchestrates Angiogenesis in Triple-Negative Breast Cancers. British Journal of Cancer, 116, 1425-1435. https://doi.org/10.1038/bjc.2017.116
|
[33]
|
Takebe, N., Hunsberger, S. and Yang, S.X. (2012) Expression of Gli1 in the Hedgehog Signaling Pathway and Breast Cancer Recurrence. Chinese Journal of Cancer Research, 24, 257-258. https://doi.org/10.1007/s11670-012-0260-2
|
[34]
|
Tao, Y., Mao, J., Zhang, Q. and Li, L. (2011) Overexpression of Hedgehog Signaling Molecules and Its Involvement in Triple-Negative Breast Cancer. Oncology Letters, 2, 995-1001.
|
[35]
|
Harris, L.G., Pannell, L.K., Singh, S., Samant, R.S. and Shevde, L.A. (2012) Increased Vascularity and Spontaneous Metastasis of Breast Cancer by Hedgehog Signaling Mediated Upregulation of cyr61. Oncogene, 31, 3370-3380.
https://doi.org/10.1038/onc.2011.496
|
[36]
|
Kurebayashi, J., Kanomata, N., Koike, Y., Ohta, Y., Saitoh, W. and Kishino, E. (2018) Comprehensive Immunohistochemical Analyses on Expression Levels of Hedgehog Signaling Molecules in Breast Cancers. Breast Cancer, 25, 759-767.
https://doi.org/10.1007/s12282-018-0884-2
|
[37]
|
Ruiz-Borrego, M., Jimenez, B., Antolin, S., Garcia-Saenz, J.A., Corral, J., Jerez, Y., Trigo, J., Urruticoechea, A., Colom, H., Gonzalo, N., et al. (2018) A Phase Ib Study of Sonidegib (LDE225), An Oral Small Molecule Inhibitor of Smoothened or Hedgehog Pathway, In Combination with Docetaxel in Triple Negative Advanced Breast Cancer Patients: GEICAM/2012-12 (EDALINE) Study. Investigational New Drug, 37, 98-108. https://doi.org/10.1007/s10637-018-0614-9
|
[38]
|
Kasper, M., Jaks, V., Fiaschi, M. and Toftgard, R. (2009) Hedgehog Signalling in Breast Cancer. Carcinogenesis, 30, 903-911. https://doi.org/10.1093/carcin/bgp048
|
[39]
|
Liu, S., Dontu, G., Mantle, I.D., Patel, S., Ahn, N.S., Jackson, K.W., Suri, P. and Wicha, M.S. (2006) Hedgehog Signaling and Bmi-1 Regulate Self-Renewal of Normal and Malignant Human Mammary Stem Cells. Cancer Research, 66, 6063-6071.
https://doi.org/10.1158/0008-5472.CAN-06-0054
|
[40]
|
Memmi, E.M., Sanarico, A.G., Giacobbe, A., Peschiaroli, A., Frezza, V., Cicalese, A., Pisati, F., Tosoni, D., Zhou, H., Tonon, G., et al. (2015) p63 Sustains Self-Renewal of Mammary Cancer Stem Cells through Regulation of Sonic Hedgehog Signaling. Proceedings of the National Academy of Sciences of the United States of America, 112, 3499-3504. https://doi.org/10.1073/pnas.1500762112
|
[41]
|
Dahmane, N., Sanchez, P., Gitton, Y., Palma, V., Sun, T., Beyna, M., Weiner, H. and Ruiz i Altaba, A. (2001) The Sonic Hedgehog-Gli Pathway Regulates Dorsal Brain Growth and Tumorigenesis. Development, 128, 5201-5212.
https://doi.org/10.1242/dev.128.24.5201
|
[42]
|
Huang, S.Y. and Yang, J.Y. (2018) Chapter 25—Targeting the Sonic Hedgehog Pathway in Brain Cancers: Advances, Limitations, and Future Directions. In: Newton, H.B., Ed., Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy, 2nd Edition, Academic Press, Cambridge, 347-359.
https://doi.org/10.1016/B978-0-12-812100-9.00025-5
|
[43]
|
O’Reilly, K.E., de Miera, E.V., Segura, M.F., Friedman, E., Poliseno, L., Han, S.W., Zhong, J., Zavadil, J., Pavlick, A., Hernando, E., et al. (2013) Hedgehog Pathway Blockade Inhibits Melanoma Cell Growth in Vitro and in Vivo. Pharmaceuticals, 6, 1429-1450. https://doi.org/10.3390/ph6111429
|
[44]
|
Santini, R., Vinci, M.C., Pandolfi, S., Penachioni, J.Y., Montagnani, V., Olivito, B., Gattai, R., Pimpinelli, N., Gerlini, G., Borgognoni, L., et al. (2012) Hedgehog-GLI Signaling Drives Self-Renewal and Tumorigenicity of Human Melanoma-Initiating Cells. Stem Cells, 30, 1808-1818. https://doi.org/10.1002/stem.1160
|
[45]
|
Fan, L., Pepicelli, C.V., Dibble, C.C., Catbagan, W., Zarycki, J.L., Laciak, R., Gipp, J., Shaw, A., Lamm, M.L., Munoz, A., et al. (2004) Hedgehog Signaling Promotes Prostate Xenograft Tumor Growth. Endocrinology, 145, 3961-3970.
https://doi.org/10.1210/en.2004-0079
|
[46]
|
Datta, S. and Datta, M.W. (2006) Sonic Hedgehog Signaling in Advanced Prostate Cancer. Cellular and Molecular Life Sciences CMLS, 63, 435-448.
https://doi.org/10.1007/s00018-005-5389-4
|
[47]
|
Ma, X., Sheng, T., Zhang, Y., Zhang, X., He, J., Huang, S., Chen, K., Sultz, J., Adegboyega, P.A., Zhang, H., et al. (2006) Hedgehog Signaling Is Activated in Subsets of Esophageal Cancers. International Journal of Cancer, 118, 139-148.
https://doi.org/10.1002/ijc.21295
|
[48]
|
Dierks, C., Grbic, J., Zirlik, K., Beigi, R., Englund, N.P., Guo, G.R., Veelken, H., Engelhardt, M., Mertelsmann, R., Kelleher, J.F., et al. (2007) Essential Role of Stromally Induced Hedgehog Signaling in B-Cell Malignancies. Nature Medicine, 13, 944-951. https://doi.org/10.1038/nm1614
|
[49]
|
Blotta, S., Jakubikova, J., Calimeri, T., Roccaro, A.M., Amodio, N., Azab, A.K., Foresta, U., Mitsiades, C.S., Rossi, M., Todoerti, K., et al. (2012) Canonical and Noncanonical Hedgehog Pathway in the Pathogenesis of Multiple Myeloma. Blood, 120, 5002-5013. https://doi.org/10.1182/blood-2011-07-368142
|
[50]
|
Zhao, C., Chen, A., Jamieson, C.H., Fereshteh, M., Abrahamsson, A., Blum, J., Kwon, H.Y., Kim, J., Chute, J.P., Rizzieri, D., et al. (2009) Hedgehog Signalling Is Essential for Maintenance of Cancer Stem Cells in Myeloid Leukaemia. Nature, 458, 776-779. https://doi.org/10.1038/nature07737
|
[51]
|
Dierks, C., Beigi, R., Guo, G.R., Zirlik, K., Stegert, M.R., Manley, P., Trussell, C., Schmitt-Graeff, A., Landwerlin, K., Veelken, H., et al. (2008) Expansion of Bcr-Abl-Positive Leukemic Stem Cells Is Dependent on Hedgehog Pathway Activation. Cancer Cell, 14, 238-249. https://doi.org/10.1016/j.ccr.2008.08.003
|
[52]
|
Irvine, D.A., Zhang, B., Allan, E.K., Holyoake, T.L., Dorsch, M., Manley, P.W., Bhatia, R. and Copland, M. (2009) Combination of the Hedgehog Pathway Inhibitor LDE225 and Nilotinib Eliminates Chronic Myeloid Leukemia Stem and Progenitor Cells. Blood, 114, 1428. https://doi.org/10.1182/blood.V114.22.1428.1428
|
[53]
|
Queiroz, K.C., Ruela-de-Sousa, R.R., Fuhler, G.M., Aberson, H.L., Ferreira, C.V., Peppelenbosch, M.P. and Spek, C.A. (2010) Hedgehog Signaling Maintains Chemoresistance in Myeloid Leukemic Cells. Oncogene, 29, 6314-6322.
https://doi.org/10.1038/onc.2010.375
|
[54]
|
Kobune, M., Takimoto, R., Murase, K., Iyama, S., Sato, T., Kikuchi, S., Kawano, Y., Miyanishi, K., Sato, Y., Niitsu, Y., et al. (2009) Drug Resistance Is Dramatically Restored by Hedgehog Inhibitors in CD34+ Leukemic Cells. Cancer Science, 100, 948-955.
https://doi.org/10.1111/j.1349-7006.2009.01111.x
|
[55]
|
Minami, Y., Hayakawa, F., Kiyoi, H., Sadarangani, A., Jamieson, C.H. and Naoe, T. (2013) Treatment with Hedgehog Inhibitor, PF-04449913, Attenuates Leukemia-Initiation Potential in Acute Myeloid Leukemia Cells. Blood, 122, Article 1649.
https://doi.org/10.1182/blood.V122.21.1649.1649
|
[56]
|
Ji, Z., Mei, F.C., Johnson, B.H., Thompson, E.B. and Cheng, X. (2007) Protein Kinase A, Not Epac, Suppresses Hedgehog Activity and Regulates Glucocorticoid Sensitivity in Acute Lymphoblastic Leukemia Cells. Journal of Biological Chemistry, 282, 37370-37377. https://doi.org/10.1074/jbc.M703697200
|
[57]
|
Lang, F., Badura, S., Ruthardt, M., Rieger, M.A. and Ottmann, O.G. (2012) Modulation of Leukemic Stem Cell Self-Renewal and Cell Fate Decisions by Inhibition of Hedgehog Signalling in Human Acute Lymphoblastic Leukemia (ALL). Blood, 120, Article 2578. https://doi.org/10.1182/blood.V120.21.2578.2578
|
[58]
|
Lin, T.L., Wang, Q.H., Brown, P., Peacock, C., Merchant, A.A., Brennan, S., Jones, E., McGovern, K., Watkins, D.N. and Sakamoto, K.M. (2010) Self-Renewal of Acute Lymphocytic Leukemia Cells Is Limited by the Hedgehog Pathway Inhibitors Cyclopamine and IPI-926. PLOS ONE, 5, e15262.
https://doi.org/10.1371/journal.pone.0015262
|
[59]
|
Hegde, G.V., Peterson, K.J., Emanuel, K., Mittal, A.K., Joshi, A.D., Dickinson, J.D., Kollessery, G.J., Bociek, R.G., Bierman, P. and Vose, J.M. (2008) Hedgehog-Induced Survival of B-Cell Chronic Lymphocytic Leukemia Cells in a Stromal Cell Microenvironment: A Potential New Therapeutic Target. Molecular Cancer Research, 6, 1928-1936. https://doi.org/10.1158/1541-7786.MCR-08-0142
|
[60]
|
Gao, J., Graves, S., Koch, U., Liu, S., Jankovic, V., Buonamici, S., El Andaloussi, A., Nimer, S.D., Kee, B.L., Taichman, R., et al. (2009) Hedgehog Signaling Is Dispensable for Adult Hematopoietic Stem Cell Function. Cell Stem Cell, 4, 548-558.
https://doi.org/10.1016/j.stem.2009.03.015
|
[61]
|
Rudin, C.M., Hann, C.L., Laterra, J., Yauch, R.L., Callahan, C.A., Fu, L., Holcomb, T., Stinson, J., Gould, S.E., Coleman, B., et al. (2009) Treatment of Medulloblastoma with Hedgehog Pathway Inhibitor GDC-0449. The New England Journal of Medicine, 361, 1173-1178. https://doi.org/10.1056/NEJMoa0902903
|
[62]
|
Lee, M.J., Hatton, B.A., Villavicencio, E.H., Khanna, P.C., Friedman, S.D., Ditzler, S., Pullar, B., Robison, K., White, K.F., Tunkey, C., et al. (2012) Hedgehog Pathway Inhibitor Saridegib (IPI-926) Increases Lifespan in a Mouse Medulloblastoma Model. Proceedings of the National Academy of Sciences of the United States of America, 109, 7859-7864. https://doi.org/10.1073/pnas.1114718109
|
[63]
|
Berman, D.M., Karhadkar, S.S., Hallahan, A.R., Pritchard, J.I., Eberhart, C.G., Watkins, D.N., Chen, J.K., Cooper, M.K., Taipale, J., Olson, J.M., et al. (2002) Medulloblastoma Growth Inhibition by Hedgehog Pathway Blockade. Science, 297, 1559-1561.
https://doi.org/10.1126/science.1073733
|
[64]
|
Robinson, G.W., Orr, B.A., Wu, G., Gururangan, S., Lin, T., Qaddoumi, I., Packer, R.J., Goldman, S., Prados, M.D., Desjardins, A., et al. (2015) Vismodegib Exerts Targeted Efficacy against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results from Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. Journal of Clinical Oncology, 33, 2646-2654.
https://doi.org/10.1200/JCO.2014.60.1591
|
[65]
|
Otsuka, A., Dreier, J., Cheng, P.F., Nageli, M., Lehmann, H., Felderer, L., Frew, I.J., Matsushita, S., Levesque, M.P. and Dummer, R. (2015) Hedgehog Pathway Inhibitors Promote Adaptive Immune Responses in Basal Cell Carcinoma. Clinical Cancer Research, 21, 1289-1297. https://doi.org/10.1158/1078-0432.CCR-14-2110
|
[66]
|
Von Hoff, D.D., LoRusso, P.M., Rudin, C.M., Reddy, J.C., Yauch, R.L., Tibes, R., Weiss, G.J., Borad, M.J., Hann, C.L., Brahmer, J.R., et al. (2009) Inhibition of the Hedgehog Pathway in Advanced Basal-Cell Carcinoma. The New England Journal of Medicine, 361, 1164-1172. https://doi.org/10.1056/NEJMoa0905360
|
[67]
|
Yoshikawa, K., Shimada, M., Miyamoto, H., Higashijima, J., Miyatani, T., Nishioka, M., Kurita, N., Iwata, T. and Uehara, H. (2009) Sonic Hedgehog Relates to Colorectal Carcinogenesis. Journal of Gastroenterology, 44, 1113-1117.
https://doi.org/10.1007/s00535-009-0110-2
|
[68]
|
Zhang, X., Zhang, S.S., Wei, G.J., Deng, Z.M. and Hu, Y. (2015) Dysregulation of Hedgehog Signaling Pathway Related Components in the Evolution of Colonic Carcinogenesis. International Journal of Clinical and Experimental Medicine, 8, 21379-21385.
|
[69]
|
Bian, Y.H., Huang, S.H., Yang, L., Ma, X.L., Xie, J.W. and Zhang, H.W. (2007) Sonic Hedgehog-Gli1 Pathway in Colorectal Adenocarcinomas. World Journal of Gastroenterology, 13, 1659-1665.
|
[70]
|
Mazumdar, T., DeVecchio, J., Agyeman, A., Shi, T. and Houghton, J.A. (2011) The GLI Genes as the Molecular Switch in Disrupting Hedgehog Signaling in Colon Cancer. Oncotarget, 2, 638-645. https://doi.org/10.18632/oncotarget.310
|
[71]
|
Mazumdar, T., Devecchio, J., Agyeman, A., Shi, T. and Houghton, J.A. (2011) Blocking Hedgehog Survival Signaling at the Level of the GLI Genes Induces DNA Damage and Extensive Cell Death in Human Colon Carcinoma Cells. Cancer Research, 71, 5904-5914. https://doi.org/10.1158/0008-5472.CAN-10-4173
|
[72]
|
Qualtrough, D., Rees, P., Speight, B., Williams, A.C. and Paraskeva, C. (2015) The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells. Cancers, 7, 1885-1899.
|
[73]
|
Song, L., Li, Z.Y., Liu, W.P. and Zhao, M.R. (2015) Crosstalk between Wnt/β-Catenin and Hedgehog/Gli Signaling Pathways in Colon Cancer and Implications for Therapy. Cancer Biology & Therapy, 16, 1-7.
https://doi.org/10.4161/15384047.2014.972215
|
[74]
|
Cai, X., Yu, K., Zhang, L., Li, Y., Li, Q., Yang, Z., Shen, T., Duan, L., Xiong, W. and Wang, W. (2015) Synergistic Inhibition of Colon Carcinoma Cell Growth by Hedgehog-Gli1 Inhibitor Arsenic Trioxide and Phosphoinositide 3-Kinase Inhibitor LY294002. OncoTargets and Therapy, 8, 877-883. https://doi.org/10.2147/OTT.S71034
|
[75]
|
Batsaikhan, B.E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H. and Shimada, M. (2014) Cyclopamine Decreased the Expression of Sonic Hedgehog and Its Downstream Genes in Colon Cancer Stem Cells. Anticancer Research, 34, 6339-6344.
|
[76]
|
Varnat, F., Duquet, A., Malerba, M., Zbinden, M., Mas, C., Gervaz, P. and Ruiz i Altaba, A. (2009) Human Colon Cancer Epithelial Cells Harbour Active HEDGEHOG-GLI Signalling That Is Essential for Tumour Growth, Recurrence, Metastasis and Stem Cell Survival and Expansion. EMBO Molecular Medicine, 1, 338-351.
https://doi.org/10.1002/emmm.200900039
|
[77]
|
Chen, W., Tang, T., Eastham-Anderson, J., Dunlap, D., Alicke, B., Nannini, M., Gould, S., Yauch, R., Modrusan, Z., DuPree, K.J., et al. (2011) Canonical Hedgehog Signaling Augments Tumor Angiogenesis by Induction of VEGF-A in Stromal Perivascular Cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 9589-9594. https://doi.org/10.1073/pnas.1017945108
|
[78]
|
Chinchilla, P., Xiao, L., Kazanietz, M.G. and Riobo, N.A. (2010) Hedgehog Proteins Activate Pro-Angiogenic Responses in Endothelial Cells through Non-Canonical Signaling Pathways. Cell Cycle, 9, 570-579. https://doi.org/10.4161/cc.9.3.10591
|
[79]
|
Polizio, A.H., Chinchilla, P., Chen, X., Kim, S., Manning, D.R. and Riobo, N.A. (2011) Heterotrimeric Gi Proteins Link Hedgehog Signaling to Activation of Rho Small GTPases to Promote Fibroblast Migration. Journal of Biological Chemistry, 286, 19589-19596. https://doi.org/10.1074/jbc.M110.197111
|
[80]
|
Sims-Mourtada, J., Izzo, J.G., Ajani, J. and Chao, K.S. (2007) Sonic Hedgehog Promotes Multiple Drug Resistance by Regulation of Drug Transport. Oncogene, 26, 5674-5679.
https://doi.org/10.1038/sj.onc.1210356
|
[81]
|
Atwood, S.X., Chang, A.L. and Oro, A.E. (2012) Hedgehog Pathway Inhibition and the Race against Tumor Evolution. Journal of Cell Biology, 199, 193-197.
https://doi.org/10.1083/jcb.201207140
|
[82]
|
Kim, J., Tang, J.Y., Gong, R., Kim, J., Lee, J.J., Clemons, K.V., Chong, C.R., Chang, K.S., Fereshteh, M., Gardner, D., et al. (2010) Itraconazole, a Commonly Used Antifungal That Inhibits Hedgehog Pathway Activity and Cancer Growth. Cancer Cell, 17, 388-399. https://doi.org/10.1016/j.ccr.2010.02.027
|
[83]
|
ClinicalTrials.gov (2013) Pilot Study of Cetuximab and the Hedgehog Inhibitor IPI-926 in Recurrent Head and Neck Cancer.
http://clinicaltrials.gov/show/NCT01255800
|