|
[1]
|
Balaji, V. (2012). The Flexible Modeling System. In Earth System Modelling—Volume 3. Springer Briefs in Earth System Sciences (pp. 33-41). Springer. [Google Scholar] [CrossRef]
|
|
[2]
|
Bintanja, R., Van Oldenborgh, G. J., & Katsman, C. A. (2015). The Effect of Increased Fresh Water from Antarctic Ice Shelves on Future Trends in Antarctic Sea Ice. Annals of Glaciology, 56, 120-126. [Google Scholar] [CrossRef]
|
|
[3]
|
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., & Katsman, C. A. (2013). Important Role for Ocean Warming and Increased Ice-Shelf Melt in Antarctic Sea-Ice Expansion. Nature Geoscience, 6, 376-379. [Google Scholar] [CrossRef]
|
|
[4]
|
Blanchard-Wrigglesworth, E., Roach, L. A., Donohoe, A., & Ding, Q. (2021). Impact of Winds and Southern Ocean SSTs on Antarctic Sea Ice Trends and Variability. Journal of Climate, 34, 949-965. [Google Scholar] [CrossRef]
|
|
[5]
|
Blockley, E., Vancoppenolle, M., Hunke, E., Bitz, C., Feltham, D., Lemieux, J. F. et al. (2020). The Future of Sea Ice Modeling: Where Do We Go from Here? Bulletin of the American Meteorological Society, 101, E1304-E1311. [Google Scholar] [CrossRef]
|
|
[6]
|
Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R., & Schwarzkopf, F. U. (2008). The Response of the Antarctic Circumpolar Current to Recent Climate Change. Nature Geoscience, 1, 864-869. [Google Scholar] [CrossRef]
|
|
[7]
|
Capistrano, V. B., Nobre, P., Veiga, S. F., Tedeschi, R., Silva, J., Bottino, M. et al. (2020). Assessing the Performance of Climate Change Simulation Results from BESM-OA2.5 Compared with a CMIP5 Model Ensemble. Geoscientific Model Development, 13, 2277-2296. [Google Scholar] [CrossRef]
|
|
[8]
|
Casagrande, F., Buss de Souza, R., Nobre, P., & Lanfer Marquez, A. (2020). An Inter-Hemispheric Seasonal Comparison of Polar Amplification Using Radiative Forcing of a Quadrupling CO2 Experiment. Annales Geophysicae, 38, 1123-1138. [Google Scholar] [CrossRef]
|
|
[9]
|
Casagrande, F., Neto, F. A., de Souza, R. B., & Nobre, P. (2021). Polar Amplification and Ice Free Conditions under 1.5, 2 and 3°C of Global Warming as Simulated by CMIP5 and CMIP6 Models. Atmosphere, 12, Article 1494. [Google Scholar] [CrossRef]
|
|
[10]
|
Casagrande, F., Nobre, P., de Souza, R. B., Marquez, A. L., Tourigny, E., Capistrano, V., & Mello, R. L. (2016). Arctic Sea Ice: Decadal Simulations and Future Scenarios Using BESM-OA. Atmospheric and Climate Sciences, 6, 351-366. [Google Scholar] [CrossRef]
|
|
[11]
|
Casagrande, F., Stachelski, L., & de Souza, R. B. (2023). Assessment of Antarctic Sea Ice Area and Concentration in Coupled Model Intercomparison Project Phase 5 and Phase 6 Models. International Journal of Climatology, 43, 1314-1332. [Google Scholar] [CrossRef]
|
|
[12]
|
Collier, M., & Uhe, P. (2012). CMIP5 Datasets from the ACCESS1.0 and ACCESS1.3 Coupled Climate Models. Centre for Australian weather and Climate Research.
|
|
[13]
|
Comiso, J. C. (2017). Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center.
|
|
[14]
|
Crosta, X., Etourneau, J., Orme, L. C., Dalaiden, Q., Campagne, P., Swingedouw, D. et al. (2021). Multi-Decadal Trends in Antarctic Sea-Ice Extent Driven by ENSO-SAM over the Last 2,000 Years. Nature Geoscience, 14, 156-160. [Google Scholar] [CrossRef]
|
|
[15]
|
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A. et al. (2006). GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 19, 643-674. [Google Scholar] [CrossRef]
|
|
[16]
|
DiGirolamo, N. E., Parkinson, C. L., Cavalieri, D. J., Gloersen, P., & Zwally, H. J. (2022). Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center.
|
|
[17]
|
England, M. R., Polvani, L. M., Sun, L., & Deser, C. (2020). Tropical Climate Responses to Projected Arctic and Antarctic Sea-Ice Loss. Nature Geoscience, 13, 275-281. [Google Scholar] [CrossRef]
|
|
[18]
|
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geoscientific Model Development, 9, 1937-1958. [Google Scholar] [CrossRef]
|
|
[19]
|
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., & Thompson, A. F. (2014). Antarctic Sea Ice Control on Ocean Circulation in Present and Glacial Climates. Proceedings of the National Academy of Sciences of the United States of America, 111, 8753-8758. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fetterer, F., Knowles, K., Meier, W., Savoie, M., & Windnagel, A. K. (2017). Sea Ice Index, Version 3. NSIDC National Snow and Ice Data Center.
|
|
[21]
|
Figueroa, S. N., Bonatti, J. P., Kubota, P. Y., Grell, G. A., Morrison, H., Barros, S. R. et al. (2016). The Brazilian Global Atmospheric Model (BAM): Performance for Tropical Rainfall Forecasting and Sensitivity to Convective Scheme and Horizontal Resolution. Weather and Forecasting, 31, 1547-1572. [Google Scholar] [CrossRef]
|
|
[22]
|
Giarolla, E., Siqueira, L. S. P., Bottino, M. J., Malagutti, M., Capistrano, V. B., & Nobre, P. (2015). Equatorial Atlantic Ocean Dynamics in a Coupled Ocean-Atmosphere Model Simulation. Ocean Dynamics, 65, 831-843. [Google Scholar] [CrossRef]
|
|
[23]
|
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M. et al. (2013). Climate and Carbon Cycle Changes from 1850 to 2100 in MPI-ESM Simulations for the Coupled Model Intercomparison Project Phase 5. Journal of Advances in Modeling Earth Systems, 5, 572-597. [Google Scholar] [CrossRef]
|
|
[24]
|
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J., Trusel, L. D., & Edwards, T. L. (2019). Global Environmental Consequences of Twenty-First-Century Ice-Sheet Melt. Nature, 566, 65-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gorenstein, I., Wainer, I., Mata, M. M., & Tonelli, M. (2022). Revisiting Antarctic Sea-Ice Decadal Variability Since 1980. Polar Science, 31, Article ID: 100743. [Google Scholar] [CrossRef]
|
|
[26]
|
Griffies, S. M. (2012). Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Tech. Rep. 7, 618 p.
|
|
[27]
|
Griffies, S. M., Schmidt, M. A. R. T. I. N., & Herzfeld, M. I. K. E. (2009). Elements of mom4p1. GFDL Ocean Group Tech. Rep. 6, 444 p.
|
|
[28]
|
Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R. et al. (2011). The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations. Journal of Climate, 24, 3520-3544. [Google Scholar] [CrossRef]
|
|
[29]
|
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E. et al. (2008). Ocean Forecasting in Terrain-Following Coordinates: Formulation and Skill Assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227, 3595-3624. [Google Scholar] [CrossRef]
|
|
[30]
|
Hallberg, R., & Gnanadesikan, A. (2006). The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project. Journal of Physical Oceanography, 36, 2232-2252. [Google Scholar] [CrossRef]
|
|
[31]
|
Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., & Meier, W. (2016). A Review of Recent Changes in Southern Ocean Sea Ice, Their Drivers and Forcings. Global and Planetary Change, 143, 228-250. [Google Scholar] [CrossRef]
|
|
[32]
|
Hofmann, M., & Morales Maqueda, M. A. (2011). The Response of Southern Ocean Eddies to Increased Midlatitude Westerlies: A Non-Eddy Resolving Model Study. Geophysical Research Letters, 38, L03605. [Google Scholar] [CrossRef]
|
|
[33]
|
Hunke, E. C., & Dukowicz, J. K. (1997). An Elastic-Viscous-Plastic Model for Sea Ice Dynamics. Journal of Physical Oceanography, 27, 1849-1867. [Google Scholar] [CrossRef]
|
|
[34]
|
Hyder, P., Edwards, J. M., Allan, R. P., Hewitt, H. T., Bracegirdle, T. J., Gregory, J. M. et al. (2018). Critical Southern Ocean Climate Model Biases Traced to Atmospheric Model Cloud Errors. Nature Communications, 9, Article No. 3625. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
IPCC (2021). Climate Change The Physical Science Basis. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. (In Press)
|
|
[36]
|
Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, C. (2016). Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias in the Community Earth System Model (CESM). Journal of Climate, 29, 4617-4636. [Google Scholar] [CrossRef]
|
|
[37]
|
Komuro, Y., Suzuki, T., Sakamoto, T. T., Hasumi, H., Ishii, M., Watanabe, M. et al. (2012). Sea-Ice in Twentieth-Century Simulations by New MIROC Coupled Models: A Comparison between Models with High Resolution and with Ice Thickness Distribution. Journal of the Meteorological Society of Japan. Ser. II, 90A, 213-232. [Google Scholar] [CrossRef]
|
|
[38]
|
Langlais, C. E., Rintoul, S. R., & Zika, J. D. (2015). Sensitivity of Antarctic Circumpolar Current Transport and Eddy Activity to Wind Patterns in the Southern Ocean. Journal of Physical Oceanography, 45, 1051-1067. [Google Scholar] [CrossRef]
|
|
[39]
|
Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization. Reviews of Geophysics, 32, 363-403. [Google Scholar] [CrossRef]
|
|
[40]
|
Liu, C., Hao, G., Li, Y., Zhao, J., Lei, R., Cheng, B. et al. (2022). The Sensitivity of Parameterization Schemes in Thermodynamic Modeling of the Landfast Sea Ice in Prydz Bay, East Antarctica. Journal of Glaciology, 68, 961-976. [Google Scholar] [CrossRef]
|
|
[41]
|
Liu, J., Zhu, Z., & Chen, D. (2023). Lowest Antarctic Sea Ice Record Broken for the Second Year in a Row. Ocean-Land-Atmosphere Research, 2, Article ID: 0007. [Google Scholar] [CrossRef]
|
|
[42]
|
Ludescher, J., Yuan, N., & Bunde, A. (2019). Detecting the Statistical Significance of the Trends in the Antarctic Sea Ice Extent: An Indication for a Turning Point. Climate Dynamics, 53, 237-244. [Google Scholar] [CrossRef]
|
|
[43]
|
Luo, H., Yang, Q., Mazloff, M., & Chen, D. (2023). A Balanced Atmospheric Ensemble Forcing for Sea Ice Modeling in Southern Ocean. Geophysical Research Letters, 50, e2022GL101139. [Google Scholar] [CrossRef]
|
|
[44]
|
Mahlstein, I., Gent, P. R., & Solomon, S. (2013). Historical Antarctic Mean Sea Ice Area, Sea Ice Trends, and Winds in CMIP5 Simulations. Journal of Geophysical Research: Atmospheres, 118, 5105-5110. [Google Scholar] [CrossRef]
|
|
[45]
|
Marshall, J., Armour, K. C., Scott, J. R., Kostov, Y., Hausmann, U., Ferreira, D. et al. (2014). The Ocean’s Role in Polar Climate Change: Asymmetric Arctic and Antarctic Responses to Greenhouse Gas and Ozone Forcing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, Article ID: 20130040. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T., & Teng, H. (2016). Antarctic Sea-Ice Expansion between 2000 and 2014 Driven by Tropical Pacific Decadal Climate Variability. Nature Geoscience, 9, 590-595. [Google Scholar] [CrossRef]
|
|
[47]
|
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., & Schuur, E. A. G. (2019). Polar Regions. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 203-320). Cambridge University Press.
|
|
[48]
|
Meyer, B., Freier, U., Grimm, V., Groeneveld, J., Hunt, B. P., Kerwath, S. et al. (2017). The Winter Pack-Ice Zone Provides a Sheltered but Food-Poor Habitat for Larval Antarctic Krill. Nature Ecology & Evolution, 1, 1853-1861. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Michaelis, J., Lüpkes, C., Zhou, X., Gryschka, M., & Gryanik, V. M. (2020). Influence of Lead Width on the Turbulent Flow over Sea Ice Leads: Modeling and Parametrization. Journal of Geophysical Research: Atmospheres, 125, e2019JD031996. [Google Scholar] [CrossRef]
|
|
[50]
|
Nobre, P., Siqueira, L. S., de Almeida, R. A., Malagutti, M., Giarolla, E., Castelão, G. P. et al. (2013). Climate Simulation and Change in the Brazilian Climate Model. Journal of Climate, 26, 6716-6732. [Google Scholar] [CrossRef]
|
|
[51]
|
Notz, D. (2012). Challenges in Simulating Sea Ice in Earth System Models. Wiley Interdisciplinary Reviews: Climate Change, 3, 509-526. [Google Scholar] [CrossRef]
|
|
[52]
|
Notz, D. (2014). Sea-Ice Extent and Its Trend Provide Limited Metrics of Model Performance. The Cryosphere, 8, 229-243. [Google Scholar] [CrossRef]
|
|
[53]
|
Notz, D., Haumann, F. A., Haak, H., Jungclaus, J. H., & Marotzke, J. (2013). Arctic Sea-Ice Evolution as Modeled by Max Planck Institute for Meteorology’s Earth System Model. Journal of Advances in Modeling Earth Systems, 5, 173-194. [Google Scholar] [CrossRef]
|
|
[54]
|
Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J. et al. (2016). The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding Sea Ice through Climate-Model Simulations. Geoscientific Model Development, 9, 3427-3446. [Google Scholar] [CrossRef]
|
|
[55]
|
Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y. et al. (2013). Antarctic Bottom Water Production by Intense Sea-Ice Formation in the Cape Darnley Polynya. Nature Geoscience, 6, 235-240. [Google Scholar] [CrossRef]
|
|
[56]
|
Oppenheimer, M., Glavovic B.C., Hinkel J., van de Wal R., Magnan A.K., Abd-Elgawad A., Cai R., Cifuentes-Jara M., DeConto R.M., Ghosh T., Hay J., Isla F., Marzeion B., Meyssignac B., & Sebesvari, Z. (2019). Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 321-445). Cambridge University Press.
|
|
[57]
|
Parkinson, C. L. (2019). A 40-Y Record Reveals Gradual Antarctic Sea Ice Increases Followed by Decreases at Rates Far Exceeding the Rates Seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 116, 14414-14423. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Pauling, A. G., Smith, I. J., Langhorne, P. J., & Bitz, C. M. (2017). Time-Dependent Freshwater Input from Ice Shelves: Impacts on Antarctic Sea Ice and the Southern Ocean in an Earth System Model. Geophysical Research Letters, 44, 10,454-10,461. [Google Scholar] [CrossRef]
|
|
[59]
|
Pithan, F., & Mauritsen, T. (2014). Arctic Amplification Dominated by Temperature Feedbacks in Contemporary Climate Models. Nature Geoscience, 7, 181-184. [Google Scholar] [CrossRef]
|
|
[60]
|
Poulsen, M. B., Jochum, M., & Nuterman, R. (2018). Parameterized and Resolved Southern Ocean Eddy Compensation. Ocean Modelling, 124, 1-15. [Google Scholar] [CrossRef]
|
|
[61]
|
Purich, A., Cai, W., England, M. H., & Cowan, T. (2016). Evidence for Link between Modelled Trends in Antarctic Sea Ice and Underestimated Westerly Wind Changes. Nature Communications, 7, Article No. 10409. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Rackow, T., Danilov, S., Goessling, H. F., Hellmer, H. H., Sein, D. V., Semmler, T. et al. (2022). Delayed Antarctic Sea-Ice Decline in High-Resolution Climate Change Simulations. Nature Communications, 13, Article No. 637. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Roach, L. A., Dean, S. M., & Renwick, J. A. (2018). Consistent Biases in Antarctic Sea Ice Concentration Simulated by Climate Models. The Cryosphere, 12, 365-383. [Google Scholar] [CrossRef]
|
|
[64]
|
Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W., et al. (2020). Antarctic Sea Ice Area in CMIP6. Geophysical Research Letters, 47, e2019GL086729. [Google Scholar] [CrossRef]
|
|
[65]
|
Semtner Jr., A. J. (1976). A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate. Journal of Physical Oceanography, 6, 379-389. [Google Scholar] [CrossRef]
|
|
[66]
|
Shu, Q., Song, Z., & Qiao, F. (2015). Assessment of Sea Ice Simulations in the CMIP5 Models. The Cryosphere, 9, 399-409. [Google Scholar] [CrossRef]
|
|
[67]
|
Singh, H. A., Polvani, L. M., & Rasch, P. J. (2019). Antarctic Sea Ice Expansion, Driven by Internal Variability, in the Presence of Increasing Atmospheric CO2. Geophysical Research Letters, 46, 14762-14771. [Google Scholar] [CrossRef]
|
|
[68]
|
Smith, M. M., Holland, M. M., Petty, A. A., Light, B., & Bailey, D. A. (2022). Effects of Increasing the Category Resolution of the Sea Ice Thickness Distribution in a Coupled Climate Model on Arctic and Antarctic Sea Ice Mean State. Journal of Geophysical Research: Oceans, 127, e2022JC019044. [Google Scholar] [CrossRef]
|
|
[69]
|
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., & Rind, D. (2008). Trends in Antarctic Annual Sea Ice Retreat and Advance and Their Relation to El Niño-Southern Oscillation and Southern Annular Mode Variability. Journal of Geophysical Research: Oceans, 113, C03S90. [Google Scholar] [CrossRef]
|
|
[70]
|
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93, 485-498. [Google Scholar] [CrossRef]
|
|
[71]
|
Touzé-Peiffer, L., Barberousse, A., & Le Treut, H. (2020). The Coupled Model Intercomparison Project: History, Uses, and Structural Effects on Climate Research. Wiley Interdisciplinary Reviews: Climate Change, 11, e648. [Google Scholar] [CrossRef]
|
|
[72]
|
Turner, J., Bracegirdle, T. J., Phillips, T., Marshall, G. J., & Hosking, J. S. (2013). An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. Journal of Climate, 26, 1473-1484. [Google Scholar] [CrossRef]
|
|
[73]
|
Turner, J., Comiso, J. C., Marshall, G. J., Lachlan-Cope, T. A., Bracegirdle, T., Maksym, T. et al. (2009). Non-Annular Atmospheric Circulation Change Induced by Stratospheric Ozone Depletion and Its Role in the Recent Increase of Antarctic Sea Ice Extent. Geophysical Research Letters, 36, L08502. [Google Scholar] [CrossRef]
|
|
[74]
|
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., & Phillips, T. (2015). Recent Changes in Antarctic Sea Ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, Article ID: 20140163. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O., Bracegirdle, T. J., & Deb, P. (2017). Unprecedented Springtime Retreat of Antarctic Sea Ice in 2016. Geophysical Research Letters, 44, 6868-6875. [Google Scholar] [CrossRef]
|
|
[76]
|
Veiga, S. F., Nobre, P., Giarolla, E., Capistrano, V., Baptista Jr., M., Marquez, A. L. et al. (2019). The Brazilian Earth System Model Ocean-Atmosphere (BESM-OA) Version 2.5: Evaluation of Its CMIP5 Historical Simulation. Geoscientific Model Development, 12, 1613-1642. [Google Scholar] [CrossRef]
|
|
[77]
|
Willmott, C. J. (1981). On the Validation of Models. Physical Geography, 2, 184-194. [Google Scholar] [CrossRef]
|
|
[78]
|
Winton, M. (2000). A Reformulated Three-Layer Sea Ice Model. Journal of Atmospheric and Oceanic Technology, 17, 525-531. [Google Scholar] [CrossRef]
|
|
[79]
|
Zemmelink, H. J., Dacey, J. W. H., Houghton, L., Hintsa, E. J., & Liss, P. S. (2008). Dimethylsulfide Emissions over the Multi-Year Ice of the Western Weddell Sea. Geophysical Research Letters, 35, L06603. [Google Scholar] [CrossRef]
|
|
[80]
|
Zhang, L., Delworth, T. L., Cooke, W., & Yang, X. (2019). Natural Variability of Southern Ocean Convection as a Driver of Observed Climate Trends. Nature Climate Change, 9, 59-65. [Google Scholar] [CrossRef]
|
|
[81]
|
Zhu, Z., Liu, J., Song, M., & Hu, Y. (2023). Changes in Extreme Temperature and Precipitation over the Southern Extratropical Continents in Response to Antarctic Sea Ice Loss. Journal of Climate, 36, 4755-4775. [Google Scholar] [CrossRef]
|