[1]
|
Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K. and Byrne, K.A. (2007) How Strongly Can Forest Management Influence Soil Carbon Sequestration? Geoderma, 137, 253-268. https://doi.org/10.1016/j.geoderma.2006.09.003
|
[2]
|
Deng, L., Zhu, G.Y., Tang, Z.S. and Shangguan, Z.P. (2016) Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Global Ecology and Conservation, 5, 127-138. https://doi.org/10.1016/j.gecco.2015.12.004
|
[3]
|
Bossio, D.A., Cook-Patton, S.C., Ellis, P.W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R.J., von Unger, M., Emmer, I.M. and Griscom, B.W. (2020) The Role of Soil Carbon in Natural Climate Solutions. Nature Sustainability, 3, 391-398. https://doi.org/10.1038/s41893-020-0491-z
|
[4]
|
Smith, H.B., Vaughan, N.E. and Forster, J. (2022) Long-Term National Climate Strategies Bet on Forests and Soils to Reach Net-Zero. Communications Earth & Environment, 3, Article No. 305. https://doi.org/10.1038/s43247-022-00636-x
|
[5]
|
Lal, R. (2005) Forest Soils and Carbon Sequestration. Forest Ecology and Management, 220, 242-258. https://doi.org/10.1016/j.foreco.2005.08.015
|
[6]
|
Shi, L., Feng, W., Xu, J. and Kuzyakov, Y. (2018) Agroforestry Systems: Meta-Analysis of Soil Carbon Stocks, Sequestration Processes, and Future Potentials. Land Degradation & Development, 29, 3886-3897. https://doi.org/10.1002/ldr.3136
|
[7]
|
Wang, B., Liu, M. and Zhou, Z. (2022) Preliminary Estimation of Soil Carbon Sequestration of China’s Forests during 1999-2008. Journal of Resources and Ecology, 13, 17-26. https://doi.org/10.5814/j.issn.1674-764x.2022.01.002
|
[8]
|
Baveye, P.C., Schnee, L.S., Boivin, P., Laba, M. and Radulovich, R. (2020) Soil Organic Matter Research and Climate Change: Merely Re-Storing Carbon versus Restoring Soil Functions. Frontiers in Environmental Science, 8, Article 579904. https://doi.org/10.3389/fenvs.2020.579904
|
[9]
|
Keesstra, S.D., Nunes, J.P., Novara, A., Finger, D.C., Avelar, D., Kalantari, Z. and Cerda, A. (2018) The Superior Effect of Nature-Based Solutions in Land Management for Enhancing Ecosystem Services. Science of The Total Environment, 610-611, 997-1009. https://doi.org/10.1016/j.scitotenv.2017.08.077
|
[10]
|
Petsch, D.K., Cionek, V.D., Thomaz, S.M. and dos Santos, N.C.L. (2022) Ecosystem Services Provided by River-Floodplain Ecosystems. Hydrobiologia, 850, 2563-2584. https://doi.org/10.1007/s10750-022-04916-7
|
[11]
|
Stammel, B., Fischer, C., Cyffka, B., Albert, C., Damm, C., Dehnhardt, C., Fischer, H., Foeckler, F., Gerstner, L., Hoffmann, T.G., Iwanowski, J., Kasperidus, H.D., Linnemann, K., Mehl, D., Podschun, S.A., Rayanov, M., Ritz, S., Rumm, A., Scholz, M., Schulz-Zunkel, C. and Thi, J. (2021) Assessing Land Use and Flood Management Impacts on Ecosystem Services in a River Landscape (Upper Danube, Germany). River Research and Applications, 37, 209-220. https://doi.org/10.1002/rra.3669
|
[12]
|
Lawson, C., Rothero, E., Gowing, D., Nisbet, T., Barsoum, N., Broadmeadow, S. and Skinner, A. (2018) The Natural Capital of Floodplains: Management, Protection, and Restoration to Deliver Greater Benefits. Valuing Nature—Natural Capital Synthesis Report VNP09. https://valuingnature.net/sites/default/files/documents/Synthesis_reports/VNP09-NatCapSynthesisReport-Floodplains-A4-16pp-144dpi.pdf
|
[13]
|
Aide, M. and Braden, I. (2023) Analysis of Missouri Floodplain Soils along the Mississippi River and the Assessment of Ecosystem Services. IntechOpen, London. https://doi.org/10.5772/intechopen.110334
|
[14]
|
D’Amore, D. and Kane, E. (2016) Forest Soil Carbon and Climate Change. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. https://www.fs.usda.gov/ccrc/topics/forest-soil-carbon
|
[15]
|
Cleve, K.V. and Powers, R.E. (1995) Soil Carbon, Soil Formation and Ecosystem Development. In: McFee, W.W. and Kelly, J.M., Eds., Carbon Forms and Functions in Forest Soils, Soil Science Society America, Madison, 155-200.
|
[16]
|
Elliott, K.J., Vose, J.M., Knoepp, J.D., Clinton, B.D. and Kloeppel, B.D. (2015) Functional Role of the Herbaceous Layer in Eastern Deciduous Forest Ecosystems. Ecosystems, 18, 221-236. https://doi.org/10.1007/s10021-014-9825-x
|
[17]
|
Treseder, K.K., Morris, S.J. and Allen, M.F. (2005) The Contributions of Root Exudates, Symbionts, and Detritus to Carbon Sequestration in the Soil. In: Zobel, R.W. and Wright, S.F., Eds., Roots and Soil Management: Interactions between Roots and the Soil, American Society Agronomy, Madison, 145-162. https://doi.org/10.2134/agronmonogr48.c8
|
[18]
|
Witzgall, K., Vidal, A., Schubert, D.I., Hoschen, C., Schweizer, S.A., Buegger, F., Pouteau, V., Chenu, C. and Mueller, C.W. (2021) Particulate Organic Matter as a Functional Soil Component for Persistent Soil Organic Carbon. Nature Communications, 12, Article No. 4115. https://doi.org/10.1038/s41467-021-24192-8
|
[19]
|
Herbert, B.E. and Bertsch, P.M. (1995) Characterization of Dissolved and Colloidal Organic Matter in Soil Solution: A Review. In: McFee, W.W. and Kelly, J.M., Eds., Carbon Forms and Functions in Forest Soils, Soil Science Society America, Madison, 63-88. https://doi.org/10.2136/1995.carbonforms.c5
|
[20]
|
Buol, S.W., Graham, R.D., Southard, R.J. and McDaniel, D. (1997) Soil Genesis and Classification. Iowa State University Press, Ames.
|
[21]
|
Brady, N.C. and Weil, R.R. (2016) The Nature and Properties of Soils. 15th Edition, Pearson, New York, 535-568.
|
[22]
|
Lehmann, J., Hansel, C.M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J.P., Torn, M.S., Wieder, W.R. and Kogel-Knabner, I. (2020) Persistence of Soil Organic Carbon Caused by Functional Complexity. Nature Geoscience, 13, 529-534. https://doi.org/10.1038/s41561-020-0612-3
|
[23]
|
Schweizer, S., Mueller, C., Höschen, C., Ivanov, P. and Kögel-Knabner, I. (2021) The Role of Clay Content and Mineral Surface Area for Soil Organic Carbon Storage in an Arable Toposequence. Biogeochemistry, 156, 401-420. https://doi.org/10.1007/s10533-021-00850-3
|
[24]
|
Singh, S., Jagadamma, S., Liang, J., Kivlin, S.N., Wood, J.D., Wang, G., Schadt, C.W., DuPont, J.I., Gowda, P. and Mayes, M.A. (2021) Differential Organic Carbon Mineralization Responses to Soil Moisture in Three Different Soil Orders under Mixed Forested System. Frontiers in Environmental Science, 9, Article 682450. https://doi.org/10.3389/fenvs.2021.682450
|
[25]
|
Kleber, M., Bourg, I.C., Coward, E.K., Hansel, C.M., Myneni, S.B. and Nunan, N. (2021) Dynamic Interactions at the Mineral-Organic Matter Interface. Nature Reviews Earth & Environment, 2, 402-421. https://doi.org/10.1038/s43017-021-00162-y
|
[26]
|
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R. and Nico, P.S. (2015) Chapter One—Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments. Advances in Agronomy, 130, 1-140. https://doi.org/10.1016/bs.agron.2014.10.005
|
[27]
|
Grandy, A.S., Strickland, M.S., Lauber, C.L., Bradford, M.A. and Fierer, N. (2009) The Influence of Microbial Communities, Management, and Soil Texture on Soil Organic Matter Chemistry. Geoderma, 150, 278-286. https://doi.org/10.1016/j.geoderma.2009.02.007
|
[28]
|
Lal, R. (2004) Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304, 1623-1627. https://doi.org/10.1126/science.1097396
|
[29]
|
Fahey, T.J., Siccama, T.G., Driscoll, C.T., Likens, G.E., Campbell, J., Johnson, C.E., Battles, J.J., Aber, J.D., Cole, J.J., Fisk, M.C., Groffman, P.M., Hamburg, S.P., Holmes, R.T., Schwartz, P.A. and Yanai, R.D. (2005) The Biogeochemistry of Carbon at Hubbard Brook. Biochemistry, 75, 109-176. https://doi.org/10.1007/s10533-004-6321-y
|
[30]
|
Groffman, P.M., Hardy, J.P., Fisk, M.C., Fahey, T.J. and Driscoll, C.T. (2009) Climate Variation and Soil Carbon and Nitrogen Cycling Processes in a Northern Hardwood Forest. Ecosystems, 12, 927-943. https://doi.org/10.1007/s10021-009-9268-y
|
[31]
|
Aide, M.T., Aide, C.C. and Braden, I.S. (2020) Soil Genesis of Histosols and Gelisols with an Emphasis on Soil Processes Supporting Carbon Sequestration. In: Sarvajayakesavalu, S. and Chareonsudjai, P., Eds., Environmental Change and Sustainability, IntechOpen, London, 181-196. https://doi.org/10.5772/intechopen.94399
|
[32]
|
McGuire, A.D., Melillo, J.M., Kicklighter, D.W. and Joyce, L.A. (1995) Equilibrium Responses of Soil Carbon to Climate Change: Empirical and Process-Based Estimates. Journal of Biogeography, 22, 785-796. http://www.jstor.com/stable/2845980 https://doi.org/10.2307/2845980
|
[33]
|
Vlek, P.L.G., Khamzina, A., Azadi, H., Bhaduri, A., Bharati, L., Braimoh, A., Martius, C., Sunderland, T. and Taheri, F. (2017) Trade-Offs in Multi-Purpose Land Use under Land Degradation. Sustainability, 9, Article 2196. https://doi.org/10.3390/su9122196
|
[34]
|
Bouwman, A.F. and Leemans, R. (1995) The Role of Forest Soils in the Global Carbon Cycle. In: McFee, W.W. and Kelly, J.M., Eds., Carbon Forms and Functions in Forest Soils, Soil Science Society America, Madison, 503-525. https://doi.org/10.2136/1995.carbonforms.c23
|
[35]
|
Liu, Q., Wang, P., Xue, Z., Zhou, Z., Liu, J. and An, S. (2021) Is the Change of Soil Carbon Capacity Persistence Rising or Remain Stable with Maturity of Vegetation Restoration? Frontiers in Soil Science, 1, Article 663910. https://doi.org/10.3389/fsoil.2021.663910
|
[36]
|
Cook-Patton, S.C., Leavitt, S.M., Gibbs, D., Harris, N.L., Lister, K., Anderson-Teixeira, K.J., Briggs, R.D., Chazdon, R.L., Crowther, T.W., Ellis, P.W., Griscom, H.P., Herrman, V., Holl, K.D., Houghton, R.A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi, Y., Paquette, A., Parker, J.D., Paul, K., Routh, D., Roxburgh, S., Saatchi, S., van den Hoogen, J., Walker, W.S., Wheeler, C.E., Wood, S.A., Xu, L. and Griscom, B.W. (2020) Mapping Carbon Accumulation Potential from Global Natural Forest Regrowth. Nature, 585, 545-550. https://doi.org/10.1038/s41586-020-2686-x
|
[37]
|
Fox, T.R. (1995) The Influence of Low-Molecular-Weight Organic Acids on Properties and Processes in Forest Soils. In: McFee, W.W. and Kelly, J.M., Eds., Carbon Forms and Functions in Forest Soils, Soil Science Society America, Madison, 43-62. https://doi.org/10.2136/1995.carbonforms.c4
|
[38]
|
Harris, N.L., Gibbs, D.A., Baccini, A., et al. (2021) Global Maps of Twenty-First Century Forest Carbon Fluxes. Nature Climate Change, 11, 234-240. https://doi.org/10.1038/s41558-020-00976-6
|
[39]
|
Zhao, F., Wu, Y., Hui, J., Sivakumar, B., Meng, X. and Liu, S. (2021) Projected Soil Organic Carbon Loss in Response to Climate Warming and Soil Water Content in a Loess Watershed. Carbon Balance and Management, 16, Article No. 24. https://doi.org/10.1186/s13021-021-00187-2
|
[40]
|
Williams, J.R. and Renard, K.G. (1985) Assessment of Soil Erosion and Crop Productivity with Process Models (EPIC). In: Follett, R.F. and Stewart, B.A., Eds., Soil Erosion and Crop Productivity, American Society Agronomy, Madison, 68-102.
|
[41]
|
Lu, X., Mao, Q., Wang, Z., Mori, T., Mo, J., Su, F. and Pang, Z. (2021) Long-Term Nitrogen Addition Decreases Soil Carbon Mineralization in an N-Rich Primary Tropical Forest. Forests, 12, Article 734. https://doi.org/10.3390/f12060734
|
[42]
|
Fekete, I., Berki, I., Lajtha, K., Trumbore, S., Francioso, O., Gioacchini, P., Montecchio, D., Varbiro, G., Beni, A., Makadi, M., Demeter, I., Madarasz, B., Juhos, K. and Kotroczo, Z. (2021) How Will a Drier Climate Change Carbon Sequestration in Soils of the Deciduous Forests of Central Europe? Biogeochemistry, 152, 13-32. https://doi.org/10.1007/s10533-020-00728-w
|
[43]
|
Grier, C.G., Lee, K.M., Nadkarni, N.M., Lkock, G.O. and Edgerton, P.J. (1989) Productivity of Forests of the United States and Its Relation to Soil and Site Factors: A Review. General Technical Reports PNW-GTR-222. Portland PR. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. https://doi.org/10.2737/PNW-GTR-222
|
[44]
|
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kogel-Knabner, I. and Schulze, E.D. (2013) Storage and Stability of Organic Carbon in Soils as Related to Depth, Occlusion within Aggregates, and Attachment to Minerals. Biogeosciences, 10, 1675-1691. https://doi.org/10.5194/bg-10-1675-2013
|
[45]
|
Liu, D., Li, S., Zhu, W., Wang, Y., Zhang, S. and Fang, Y. (2023) Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China. Land, 12, Article 1019. https://doi.org/10.3390/land12051019
|
[46]
|
Schmidt, M.W., Torn, M.S., Abiven, S., Dittmar, S., Guggenberger, G., Janssen, I.A., KIleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Raqsse, D.P., Weiner, S. and Trumbore, S. (2011) Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478, 49-56. https://doi.org/10.1038/nature10386
|
[47]
|
Verchot, L.V., Dutaur, L., Shepherd, K.D. and Albrecht, A. (2011) Organic Matter Stabilization in Soil Aggregates: Understanding the Biogeochemical Mechanisms That Determine the Fate of Carbon Inputs in Soils. Geoderma, 161, 182-193. https://doi.org/10.1016/j.geoderma.2010.12.017
|
[48]
|
Kumar, R., Rawat, K.S., Singh, J., Singh, A. and Rai, A. (2013) Soil Aggregation Dynamics and Carbon Sequestration. Journal of Applied and Natural Science, 5, 250-267. https://doi.org/10.31018/jans.v5i1.314
|
[49]
|
Fortier, J., Truax, B., Gagnon, D. and Lambert, F. (2013) Root Biomass and Soil Carbon Distribution in Hybrid Poplar Riparian Buffers, Herbaceous Riparian Buffers and Natural Riparian Woodlots on Farmland. SpringerPlus, 2, Article No. 539. https://doi.org/10.1186/2193-1801-2-539
|
[50]
|
Festervand, D.F. (1981) Soil Survey of Cape Girardeau, Scott and Mississippi Counties, Missouri. Produced in Cooperation with the United States Department of Agriculture, United States Forest Service, and the University Missouri-Columbia, Washington DC.
|
[51]
|
Brown, B.C. and Childress, J.D. (1985) Soil Survey of Ste. Genevieve County, Missouri. Produced in Cooperation with the United States Department of Agriculture, United States Forest Service, and the University Missouri-Columbia, Washington DC.
|
[52]
|
(2023) National Cooperative Soil Survey Soil Characterization Database (Lab Data Mart). https://www.nrcs.usda.gov/resources/data-and-reports/ncss-soil-characterization-data-lab-data-mart
|
[53]
|
Zhang, L., Wang, Y., Chen, J., Feng, L., Li, F. and Yu, L. (2022) Characteristics and Drivers of Soil Organic Carbon Saturation Deficit in Karst Forests of China. Diversity, 14, Article 62. https://doi.org/10.3390/d14020062
|
[54]
|
Bastin, J.F., Finegold, C.G., Mollicone, D., Rezenhde, M., Routh, D., Zohner, C.M. and Crowther, T.W. (2019) The Global Tree Restoration Potential. Science, 365, 76-79. https://doi.org/10.1126/science.aax0848
|