[1]
|
Podschun, R. and Ullmann, U. (1998) Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clinical Microbiology Reviews, 11, 589-603. https://doi.org/10.1128/CMR.11.4.589
|
[2]
|
Herridge, W.P., Shibu, P., O’Shea, J., Brook, T.C. and Hoyles, L. (2020) Bacteriophages of Klebsiella spp., Their Diversity and Potential Therapeutic Uses. Journal of Medical Microbiology, 19, 176-194.
|
[3]
|
Broberg, C.A., Palacios, M. and Miller, V.L. (2014) Klebsiella: A Long way to Go towards Understanding This Enigmatic Jet-Setter. F1000Prime Reports, 6, Article No. 64. https://doi.org/10.12703/P6-64
|
[4]
|
CA-SFM-EUCAST (2021) Comité de l’antibiogramme de la Société Française de Microbiologie. https://www.sfm-microbiologie.org/wp-content/uploads/2021/04/CASFM2021__V1.0.AVRIL_2021.pdf
|
[5]
|
Hall, B.G. and Barlow, M. (2005) Revised Ambler Classification of β-Lactamases. Journal of Antimicrobial Chemotherapy, 55, 1050-1051. https://doi.org/10.1093/jac/dki130
|
[6]
|
Bush, K. and Jacoby, G.A. (2010) Updated Functional Classification of β-Lactamases. Antimicrobial Agents and Chemotherapy, 54, 969-976. https://doi.org/10.1128/AAC.01009-09
|
[7]
|
Tzouvelekis, L.S., Markogiannakis, A., Psichogiou, M., Tassios, P.T. and Daikos, G.L. (2012) Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. Clinical Microbiology Reviews, 25, 682-707. https://doi.org/10.1128/CMR.05035-11
|
[8]
|
Cantón, R., Akóva, M., Carmeli, Y., Giske, C.G., Glupczynski, Y., Gniadkowski, M., Livermore, D.M., Miriagou, V., Naas, T., Rossolini, G.M., Samuelsen, Ø., Seifert, H., Woodford, N. and Nordmann, P. (2012) Rapid Evolution and Spread of Carbapenemases among Enterobacteriaceae in Europe. Clinical Microbiology and Infection, 18, 413-431. https://doi.org/10.1111/j.1469-0691.2012.03821.x
|
[9]
|
Lascols, C., Peirano, G., Hackel, M., Laupland, K.B. and Pitout, J.D.D. (2013) Surveillance and Molecular Epidemiology of Klebsiella pneumoniae Isolates That Produce Carbapenemases: First Report of OXA-48-Like Enzymes in North America. Antimicrobial Agents and Chemotherapy, 57, 130-136. https://doi.org/10.1128/AAC.01686-12
|
[10]
|
Manenzhe, R.I., Zar, H.J., Nicol, M.P. and Kaba, M. (2015) The Spread of Carbapenemase-Producing Bacteria in Africa: A Systematic Review. Journal of Antimicrobial Chemotherapy, 70, 23-40. https://doi.org/10.1093/jac/dku356
|
[11]
|
Dembélé, R., Soulama, I., Kaboré, W.A.D., Konaté, A., Kagambèga, A., N’Golo, D.C., Traoré, O., Seck, A., Traoré, A.S., Guessennd, N.K., Gassama-Sow, A. and Barro, N. (2021) Molecular Characterization of Carbapenemase-Producing Enterobacteralesin Children with Diarrhea in Rural Burkina Faso. Journal of Drug Delivery and Therapeutics, 11, 84-92. https://doi.org/10.22270/jddt.v11i1.4513
|
[12]
|
Mètuor, A. (2014) Caractérisations moléculaire et cinétique des types de β-lactamases à spectre élargi (BLSE) de souches bactériennes collectées au Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle (CHUP-CDG) de Ouagadougou. Université de Ouagadougou, Ouagadougou.
|
[13]
|
Mètuor, D.A., Tiemtoré, R.Y.W.-K., Bangré, Y.A., Zohoncon, T.M., Sougué, S., Zongo, J.K. and Simporé, J. (2019) Detection of Multidrug-Resistant Enterobacteria Simultaneously Producing Extended-Spectrum Î2-Lactamases of the PER and GES Types Isolated at Saint Camille Hospital Center, Ouagadougou, Burkina Faso. African Journal of Microbiology Research, 13, 414-420. https://doi.org/10.5897/AJMR2019.9147
|
[14]
|
Huang, S., Dai, W., Sun, S., Zhang, X. and Zhang, L. (2012) Prevalence of Plasmid-Mediated Quinolone Resistance and Aminoglycoside Resistance Determinants among Carbapeneme Non-Susceptible Enterobacter cloacae. PLOS ONE, 7, e47636. https://doi.org/10.1371/journal.pone.0047636
|
[15]
|
Walsh, T.R., Toleman, M.A., Poirel, L. and Nordmann, P. (2005) Metallo-β-Lactamases: The Quiet before the Storm? Clinical Microbiology Reviews, 18, 306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005
|
[16]
|
Pitout, J.D.D., Nordmann, P. and Poirel, L. (2015) Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrobial Agents and Chemotherapy, 59, 5873-5884. https://doi.org/10.1128/AAC.01019-15
|
[17]
|
Martinez, J.L. (2014) General Principles of Antibiotic Resistance in Bacteria. Drug Discovery Today, 11, 33-39. https://doi.org/10.1016/j.ddtec.2014.02.001
|
[18]
|
Ahoyo, A.T., Baba-Moussa, L., Anago, A.E., Avogbe, P., Missihoun, T.D., Loko, F., Prévost, G., Sanni, A. and Dramane, K. (2007) Incidence d’infections liées à Escherichia coli producteur de bêta lactamase à spectre élargi au Centre hospitalier départemental du Zou et Collines au Bénin. Médecine et Maladies Infectieuses, 37, 746-752. https://doi.org/10.1016/j.medmal.2007.03.004
|
[19]
|
Toudji, A.G., Djeri, B., Karou, S.D., Tigossou, S., Ameyapoh, Y. and De Souza, C. (2017) Prévalence des souches d’entérobactéries productrices de bêta-lactamases à spectre élargi isolées au Togo et de leur sensibilité aux antibiotiques. International Journal of Biological and Chemical Sciences, 11, 1165-1177. https://doi.org/10.4314/ijbcs.v11i3.19
|
[20]
|
Mètuor-Dabiré, A., Sougué, S., Tiemtoré, R.Y.W.-K., Zohoncon, T.M., Bangré, Y.A., Ouédraogo, P., Kabré, E. and Simporé, J. (2019) Coexistence between (TOHO-Type and BES-Type) Extended-Spectrum Î2-Lactamase Genes of Identified Enterobacteria at Saint Camille Hospital, Ouagadougou, West Africa. International Journal of Genetics and Molecular Biology, 11, 34-40. https://doi.org/10.5897/IJGMB2019.0181
|
[21]
|
Aminul, P., Anwar, S., Molla, M.M.A. and Miah, M.R.A. (2021) Evaluation of Antibiotic Resistance Patterns in Clinical Isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health, 3, 301-306. https://doi.org/10.1016/j.bsheal.2021.11.001
|
[22]
|
Barakzahi, M., Hormozi, B., Rashki, A. and Rashki Ghalehnoo, Z. (2014) Prevalence of Extended Spectrum β-Lactamase in Klebsiella pneumonia Isolates in a Teaching Hospital of Zahedan City, Iran. Avicenna Journal of Clinical Microbiology and Infection, 1, Article No. 22934. https://doi.org/10.17795/ajcmi-22934
|
[23]
|
Harbottle, H., Thakur, S., Zhao, S. and White, D.G. (2006) Genetics of Antimicrobial Resistance. Animal Biotechnology, 17, 111-124. https://doi.org/10.1080/10495390600957092
|
[24]
|
Muylaert, A. and Mainil, J. (2013) Résistance bactériennes aux antibiotiques, les mécanismes et leur “contagiosité”. Annales de Médecine Vétérinaire, 156, 109-123.
|
[25]
|
Shashwati, N., Kiran, T. and Dhanvijay, A.G. (2014) Study of Extended Spectrum β-Lactamase Producing Enterobacteriaceae and Antibiotic Coresistance in a Tertiary Care Teaching Hospital. Journal of Natural Science, Biology and Medicine, 5, 30-35.
|
[26]
|
Teklu, D.S., Negeri, A.A., Legese, M.H., Bedada, T.L., Woldemariam, H.K. and Tullu, K.D. (2019) Extended-Spectrum Beta-Lactamase Production and Multi-Drug Resistance among Enterobacteriaceae Isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance & Infection Control, 8, Article No. 39. https://doi.org/10.1186/s13756-019-0488-4
|
[27]
|
Alizadeh, H., Khodavandi, A., Alizadeh, F. and Bahador, N. (2021) Molecular Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Isolates Producing blaVIM, blaNDM, and blaIMP in Clinical Centers in Isfahan, Iran. Jundishapur Journal of Microbiology, 14, e114473. https://doi.org/10.5812/jjm.114473
|
[28]
|
Nordmann, P., Naas, T. and Poirel, L. (2011) Global Spread of Carbapenemase-Producing Enterobacteriaceae. Emerging Infectious Diseases, 17, 1791-1798. https://doi.org/10.3201/eid1710.110655
|
[29]
|
Gao, H., Liu, Y., Wang, R., Wang, Q., Jin, L. and Wang, H. (2020) The Transferability and Evolution of NDM-1 and KPC-2 Co-Producing Klebsiella pneumoniae from Clinical Settings. EBioMedicine, 51, Article ID: 102599. https://doi.org/10.1016/j.ebiom.2019.102599
|
[30]
|
Munita, J.M. and Arias, C.A. (2016) Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
|
[31]
|
Khodadadian, R., Rahdar, H.A., Javadi, A., Safari, M. and Khorshidi, A. (2018) Detection of VIM-1 and IMP-1 Genes in Klebsiella pneumoniae and Relationship with Biofilm Formation. Microbial Pathogenesis, 115, 25-30. https://doi.org/10.1016/j.micpath.2017.12.036
|
[32]
|
Limbago, B.M., Rasheed, J.K. anderson, K.F., Zhu, W., Kitchel, B., Watz, N., Munro, S., Gans, H., Banaei, N. and Kallen, A.J. (2011) IMP-Producing Carbapenem-Resistant Klebsiella pneumoniae in the United States. Journal of Clinical Microbiology, 49, 4239-4245. https://doi.org/10.1128/JCM.05297-11
|
[33]
|
Han, R., Shi, Q., Wu, S., Yin, D., Peng, M., Dong, D., Zheng, Y., Guo, Y., Zhang, R. and Hu, F. (2020) Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among Carbapenem-Resistant Enterobacteriaceae Isolated from Adult and Children Patients in China. Frontiers in Cellular and Infection Microbiology, 10, Article 314. https://doi.org/10.3389/fcimb.2020.00314
|
[34]
|
Xu, J., Lin, W., Chen, Y. and He, F. (2020) Characterization of an IMP-4-Producing Klebsiella pneumoniae ST1873 Strain Recovered from an Infant with a Bloodstream Infection in China. Infection and Drug Resistance, 13, 773-779. https://doi.org/10.2147/IDR.S247341
|
[35]
|
Lincopan, N., McCulloch, J.A., Reinert, C., Cassettari, V.C., Gales, A.C. and Mamizuka, E.M. (2005) First Isolation of Metallo-β-Lactamase-Producing Multiresistant Klebsiella pneumoniae from a Patient in Brazil. Journal of Clinical Microbiology, 43, 516-519. https://doi.org/10.1128/JCM.43.1.516-519.2005
|
[36]
|
Fukigai, S., Alba, J., Kimura, S., Iida, T., Nishikura, N., Ishii, Y. and Yamaguchi, K. (2007) Nosocomial Outbreak of Genetically Related IMP-1 β-Lactamase-Producing Klebsiella pneumoniae in a General Hospital in Japan. International Journal of Antimicrobial Agents, 29, 306-310. https://doi.org/10.1016/j.ijantimicag.2006.10.011
|
[37]
|
Wang, J., Yuan, M., Chen, H., Chen, X., Jia, Y., Zhu, X., Bai, L., Bai, X., Fanning, S., Lu, J. and Li, J. (2017) First Report of Klebsiella oxytoca Strain Simultaneously Producing NDM-1, IMP-4, and KPC-2 Carbapenemases. Antimicrobial Agents and Chemotherapy, 61, e00877-17. https://doi.org/10.1128/AAC.00877-17
|
[38]
|
Stewart, J., Judd, L.M., Jenney, A., Holt, K.E., Wyres, K.L. and Hawkey, J. (2022) Epidemiology and Genomic Analysis of Klebsiella oxytoca from a Single Hospital Network in Australia. BMC Infectious Diseases, 22, Article No. 704. https://doi.org/10.1186/s12879-022-07687-7
|
[39]
|
Mushi, M.F., Mshana, S.E., Imirzalioglu, C. and Bwanga, F. (2014) Carbapenemase Genes among Multidrug Resistant Gram Negative Clinical Isolates from a Tertiary Hospital in Mwanza, Tanzania. BioMed Research International, 2014, Article ID: 303104. https://doi.org/10.1155/2014/303104
|
[40]
|
Zafer, M.M., Al-Agamy, M.H., El-Mahallawy, H.A., Amin, M.A. and Ashour, M.S.E.-D. (2014) Antimicrobial Resistance Pattern and Their Beta-Lactamase Encoding Genes among Pseudomonas aeruginosa Strains Isolated from Cancer Patients. BioMed Research International, 2014, Article ID: 101635. https://doi.org/10.1155/2014/101635
|
[41]
|
Aghamiri, S., Amirmozafari, N., Fallah Mehrabadi, J., Fouladtan, B. and Samadi Kafil, H. (2014) Antibiotic Resistance Pattern and Evaluation of Metallo-Beta Lactamase Genes Including bla-IMP and bla-VIM Types in Pseudomonas aeruginosa Isolated from Patients in Tehran Hospitals. International Scholarly Research Notices, 2014, Article ID: 941507. https://doi.org/10.1155/2014/941507
|
[42]
|
Adam, M.A. and Elhag, W.I. (2018) Prevalence of Metallo-β-Lactamase Acquired Genes among Carbapenems Susceptible and Resistant Gram-Negative Clinical Isolates Using Multiplex PCR, Khartoum Hospitals, Khartoum Sudan. BMC Infectious Diseases, 18, Article No. 668. https://doi.org/10.1186/s12879-018-3581-z
|
[43]
|
Nordmann, P. (2014) Carbapenemase-Producing Enterobacteriaceae: Overview of a Major Public Health Challenge. Médecine et Maladies Infectieuses, 44, 51-56. https://doi.org/10.1016/j.medmal.2013.11.007
|