[1]
|
Lee, S.H. and Jun, B.-H. (2019) Silver Nanoparticles: Synthesis and Application for Nanomedicine. International Journal of Molecular Sciences, 20, Article No. 865. https://doi.org/10.3390/ijms20040865
|
[2]
|
Cai, S.S., Li, T., Akinade, T., Zhu, Y. and Leong, K.W. (2021) Drug Delivery Carriers with Therapeutic Functions. Advanced Drug Delivery Reviews, 176, Article ID: 113884. https://doi.org/10.1016/j.addr.2021.113884
|
[3]
|
Tan, G., Xu, J., Chirume, W.M., Zhang, J., Zhang, H. and Hu, X. (2021) Antibacterial and Anti-Inflammatory Coating Materials for Orthopedic Implants: A Review. Coatings, 11, Article No. 1401. https://doi.org/10.3390/coatings11111401
|
[4]
|
Qamar, S.U.R. (2021) Nanocomposites: Potential Therapeutic Agents for the Diagnosis and Treatment of Infectious Diseases and Cancer. Colloid and Interface Science Communications, 43, Article ID: 100463. https://doi.org/10.1016/j.colcom.2021.100463
|
[5]
|
Jadoun, S., Verma, A. and Arif, R. (2020) Modification of Textiles via Nanomaterials and Their Applications. In: Shabbir, M., Ahmed, S. and Sheikh, J.N., Eds., Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques, Scrivener Publishing, Beverly, 135-152. https://doi.org/10.1002/9781119620396.ch6
|
[6]
|
Hamouda, T., Ibrahim, H.M., Kafafy, H.H., Mashaly, H.M., Mohamed, N.H. and Aly, N.M. (2021) Preparation of Cellulose-Based Wipes Treated with Antimicrobial and Antiviral Silver Nanoparticles as Novel Effective High-Performance Coronavirus Fighter. International Journal of Biological Macromolecules, 181, 990-1002. https://doi.org/10.1016/j.ijbiomac.2021.04.071
|
[7]
|
Zhang, H., Tang, N., Yu, X., Guo, Z., Liu, Z., Sun, X., et al. (2022) Natural Glycyrrhizic Acid-Tailored Hydrogel with in-Situ Gradient Reduction of AgNPs Layer as High-Performance, Multi-Functional, Sustainable Flexible Sensors. Chemical Engineering Journal, 430, Article ID: 132779. https://doi.org/10.1016/j.cej.2021.132779
|
[8]
|
Zuo, X., Zhang, X., Qu, L. and Miao, J. (2022) Smart Fibers and Textiles for Personal Thermal Management in Emerging Wearable Applications. Advanced Materials Technologies, 8, Article ID: 2201137. https://doi.org/10.1002/admt.202201137
|
[9]
|
Sobhan, A., Muthukumarappan, K., Wei, L., Van Den Top, T. and Zhou, R. (2020) Development of an Activated Carbon-Based Nanocomposite Film with Antibacterial Property for Smart Food Packaging. Materials Today Communications, 23, Article ID: 101124. https://doi.org/10.1016/j.mtcomm.2020.101124
|
[10]
|
Vieira, I.R.S., de Carvalho, A.P.A.D. and Conte-Junior, C.A. (2022) Recent Advances in Biobased and Biodegradable Polymer Nanocomposites, Nanoparticles, and Natural Antioxidants for Antibacterial and Antioxidant Food Packaging Applications. Comprehensive Reviews in Food Science and Food Safety, 21, 3673-3716. https://doi.org/10.1111/1541-4337.12990
|
[11]
|
Hong, X., Wen, J., Xiong, X. and Hu, Y. (2016) Shape Effect on the Antibacterial Activity of Silver Nanoparticles Synthesized via a Microwave-Assisted Method. Environmental Science and Pollution Research, 23, 4489-4497. https://doi.org/10.1007/s11356-015-5668-z
|
[12]
|
Matranga, V. and Corsi, I. (2012) Toxic Effects of Engineered Nanoparticles in the Marine Environment: Model Organisms and Molecular Approaches. Marine Environmental Research, 76, 32-40. https://doi.org/10.1016/j.marenvres.2012.01.006
|
[13]
|
Ahamed, M., AlSalhi, M.S. and Siddiqui, M.K.J. (2010) Silver Nanoparticle Applications and Human Health. Clinicachimica Acta, 411, 1841-1848. https://doi.org/10.1016/j.cca.2010.08.016
|
[14]
|
Wu, T. and Tang, M. (2018) Review of the Effects of Manufactured Nanoparticles on Mammalian Target Organs. Journal of Applied Toxicology, 38, 25-40. https://doi.org/10.1002/jat.3499
|
[15]
|
Quadros, M.E. and Marr, L.C. (2010) Environmental and Human Health Risks of Aerosolized Silver Nanoparticles. Journal of the Air & Waste Management Association, 60, 770-781. https://doi.org/10.3155/1047-3289.60.7.770
|
[16]
|
Tortella, G.R., Rubilar, O., Durán, N., Diez, M.C., Martínez, M., Parada, J. and Seabra, A.B. (2020) Silver Nanoparticles: Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment. Journal of Hazardous Materials, 390, Article ID: 121974. https://doi.org/10.1016/j.jhazmat.2019.121974
|
[17]
|
Noga, M., Milan, J., Frydrych, A. and Jurowski, K. (2023) Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. International Journal of Molecular Sciences, 24, 5133. https://doi.org/10.3390/ijms24065133
|
[18]
|
Banan, A., Forouharmehr, A., Kalbassi, M.R., Esmaeilbeigi, M., Bahmani, M., Sadati, M.Y., et al. (2022) Salinity Gradients Exacerbate the Genotoxicity and Bioaccumulation of Silver Nanoparticles in Fingerling Persian Sturgeon (Acipenser persicus). Regional Studies in Marine Science, 52, Article ID: 102264. https://doi.org/10.1016/j.rsma.2022.102264
|
[19]
|
Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., et al. (2014) Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. Journal of Pharmaceutical Sciences, 103, 1931-1944. https://doi.org/10.1002/jps.24001
|
[20]
|
Bélteky, P., Rónavári, A., Igaz, N., Szerencsés, B., Tóth, I.Y., Pfeiffer, I., Kiricsi, M. and Kónya, Z. (2019) Silver Nanoparticles: Aggregation Behavior in Biorelevant Conditions and Its Impact on Biological Activity. International Journal of Nanomedicine, 14, 667-687. https://doi.org/10.2147/IJN.S185965
|
[21]
|
Liao, C., Li, Y. and Tjong, S.C. (2019) Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20, Article No. 449. https://doi.org/10.3390/ijms20020449
|
[22]
|
Phaugat, P., Khansili, A., Nishal, S. and Kumari, B. (2020) A Concise Review on Multidimensional Silver Nanoparticle Health Aids and Threats. Current Drug Therapy, 15, 457-468. https://doi.org/10.2174/1574885515999200425234517
|
[23]
|
Flores-López, L.Z., Espinoza-Gómez, H. and Somanathan, R. (2019) Silver Nanoparticles: Electron Transfer, Reactive Oxygen Species, Oxidative Stress, Beneficial and Toxicological Effects. Mini Review. Journal of Applied Toxicology, 39, 16-26. https://doi.org/10.1002/jat.3654
|
[24]
|
Cheng, Y., Chen, Z., Yang, S., Liu, T., Yin, L., Pu, Y. and Liang, G. (2021) Nanomaterials-Induced Toxicity on Cardiac Myocytes and Tissues, and Emerging Toxicity Assessment Techniques. Science of the Total Environment, 800, Article ID: 149584. https://doi.org/10.1016/j.scitotenv.2021.149584
|
[25]
|
Lebda, M.A., Sadek, K.M., Tohamy, H.G., Abouzed, T.K., Shukry, M., Umezawa, M. and El-Sayed, Y.S. (2018) Potential Role of α-Lipoic Acid and Ginkgo biloba Against Silver Nanoparticles-Induced Neuronal Apoptosis and Blood-Brain Barrier Impairments in Rats. Life Sciences, 212, 251-260. https://doi.org/10.1016/j.lfs.2018.10.011
|
[26]
|
Hashim, M., Mujahid, H., Hassan, S., Bukhari, S., Anjum, I., Hano, C., Abbasi, B.H. and Anjum, S. (2022) Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives. Biomolecules, 12, Article No. 1337. https://doi.org/10.3390/biom12101337
|
[27]
|
Habas, K., Demir, E., Guo, C., Brinkworth, M.H. and Anderson, D. (2021) Toxicity Mechanisms of Nanoparticles in the Male Reproductive System. Drug Metabolism Reviews, 53, 604-617. https://doi.org/10.1080/03602532.2021.1917597
|
[28]
|
Padilla-Camberos, E., Juárez-Navarro, K.J., Sanchez-Hernandez, I.M., Torres-Gonzalez, O.R. and Flores-Fernandez, J.M. (2022) Toxicological Evaluation of Silver Nanoparticles Synthesized with Peel Extract of Stenocereus queretaroensis. Materials, 15, Article No. 5700. https://doi.org/10.3390/ma15165700
|
[29]
|
Missaoui, W.N., Arnold, R.D. and Cummings, B.S. (2018) Toxicological Status of Nanoparticles: What We Know and What We Don’t Know. Chemico-Biological Interactions, 295, 1-12. https://doi.org/10.1016/j.cbi.2018.07.015
|
[30]
|
Ezeuko, A.S., Ojemaye, M.O., Okoh, O.O. and Okoh, A.I. (2021) Potentials of Metallic Nanoparticles for the Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater: A Critical Review. Journal of Water Process Engineering, 41, Article ID: 102041. https://doi.org/10.1016/j.jwpe.2021.102041
|
[31]
|
Schlich, K., Klawonn, T., Terytze, K. and Hund-Rinke, K. (2013) Effects of Silver Nanoparticles and Silver Nitrate in the Earthworm Reproduction Test. Environmental Toxicology and Chemistry, 32, 181-188. https://doi.org/10.1002/etc.2030
|
[32]
|
Jabir, M.S., Hussien, A.A., Sulaiman, G.M., Yaseen, N.Y., Dewir, Y.H., Alwahibi, M.S., Soliman, D.A. and Rizwana, H. (2021) Green Synthesis of Silver Nanoparticles from Eriobotrya japonica Extract: A Promising Approach against Cancer Cells Proliferation, Inflammation, Allergic Disorders and Phagocytosis Induction. Artificial Cells, Nanomedicine, and Biotechnology, 49, 48-60. https://doi.org/10.1080/21691401.2020.1867152
|
[33]
|
Stebounova, L.V., Guio, E. and Grassian, V.H. (2011) Silver Nanoparticles in Simulated Biological Media: A Study of Aggregation, Sedimentation, and Dissolution. Journal of Nanoparticle Research, 13, 233-244. https://doi.org/10.1007/s11051-010-0022-3
|
[34]
|
Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., TayefiNasrabadi, H., et al. (2016) Silver Nanoparticles: Synthesis Methods, Bio-Applications and Properties. Critical Reviews in Microbiology, 42, 173-180.
|
[35]
|
Ferrag, C., Li, S., Jeon, K., Andoy, N.M., Sullan, R.M.A., Mikhaylichenko, S. and Kerman, K. (2021) Polyacrylamide Hydrogels Doped with Different Shapes of Silver Nanoparticles: Antibacterial and Mechanical Properties. Colloids and Surfaces B: Biointerfaces, 197, Article ID: 111397. https://doi.org/10.1016/j.colsurfb.2020.111397
|
[36]
|
Ferdous, Z. and Nemmar, A. (2020) Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 21, Article No. 2375. https://doi.org/10.3390/ijms21072375
|
[37]
|
Burange, P.J., Tawar, M.G., Bairagi, R.A., Malviya, V.R., Sahu, V.K., Shewatkar, S.N., Sawarkar, R.A. and Mamurkar, R.R. (2021) Synthesis of Silver Nanoparticles by Using Aloe vera and Thuja orientalis Leaves Extract and Their Biological Activity: A Comprehensive Review. Bulletin of the National Research Centre, 45, Article No. 181. https://doi.org/10.1186/s42269-021-00639-2
|
[38]
|
De Matteis, V., Cascione, M., Costa, D., Martano, S., Manno, D., Cannavale, A., et al. (2023) Aloe Vera Silver Nanoparticles Addition in Chitosan Films: Improvement of Physicochemical Properties for Eco-Friendly Food Packaging Material. Journal of Materials Research and Technology, 24, 1015-1033. https://doi.org/10.1016/j.jmrt.2023.03.025
|
[39]
|
Sooklert, K., Wongjarupong, A., Cherdchom, S., Wongjarupong, N., Jindatip, D., Phungnoi, Y., Rojanathanes, R. and Sereemaspun, A. (2019) Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, in Silico, and Ultrastructure Investigation. Toxicological Research, 35, 257-270. https://doi.org/10.5487/TR.2019.35.3.257
|
[40]
|
Gurunathan, S., Qasim, M., Park, C., Yoo, H., Choi, D.Y., Song, H., et al. (2018) Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells. International Journal of Molecular Sciences, 19, Article No. 3618. https://doi.org/10.3390/ijms19113618
|
[41]
|
Rodríguez-Hernández, A.G., Vazquez-Duhalt, R. and Huerta-Saquero, A. (2020) Nanoparticle-Plasma Membrane Interactions: Thermodynamics, Toxicity and Cellular Response. Current Medicinal Chemistry, 27, 3330-3345. https://doi.org/10.2174/0929867325666181112090648
|
[42]
|
Kohan-Baghkheirati, E. and Geisler-Lee, J. (2015) Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat. Nanomaterials, 5, 436-467. https://doi.org/10.3390/nano5020436
|
[43]
|
Dasgupta, N., Ranjan, S., Ramalingam, C. and Gandhi, M. (2019) Silver Nanoparticles Engineered by Thermal CO-Reduction Approach Induces Liver Damage in Wistar Rats: Acute and Sub-Chronic Toxicity Analysis. 3 Biotech, 9, Article No. 125. https://doi.org/10.1007/s13205-019-1651-6
|
[44]
|
Kobos, L., Alqahtani, S., Xia, L., Coltellino, V., Kishman, R., McIlrath, D., Perez-Torres, C. and Shannahan, J. (2020) Comparison of Silver Nanoparticle-Induced Inflammatory Responses between Healthy and Metabolic Syndrome Mouse Models. Journal of Toxicology and Environmental Health, Part A, 83, 249-268. https://doi.org/10.1080/15287394.2020.1748779
|
[45]
|
Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A. and Shao, L. (2018) Potential Adverse Effects of Nanoparticles on the Reproductive System. International Journal of Nanomedicine, 13, 8487-8506. https://doi.org/10.2147/IJN.S170723
|
[46]
|
Liu, Y., Li, H. and Xiao, K. (2016) Distribution and Biological Effects of Nanoparticles in the Reproductive System. Current Drug Metabolism, 17, 478-496. https://doi.org/10.2174/1389200217666160105111436
|
[47]
|
Dantas, G.P.F., Ferraz, F.S., Andrade, L.M. and Costa, G.M. (2022) Male Reproductive Toxicity of Inorganic Nanoparticles in Rodent Models: A Systematic Review. Chemico-Biological Interactions, 363, Article ID: 110023. https://doi.org/10.1016/j.cbi.2022.110023
|
[48]
|
Mubeen, B., Hasnain, A., Wang, J., Zheng, H., Naqvi, S.A.H., Prasad, R., et al. (2023) Current Progress and Open Challenges for Combined Toxic Effects of Manufactured Nano-Sized Objects (MNO’s) on Soil Biota and Microbial Community. Coatings, 13, Article No. 212. https://doi.org/10.3390/coatings13010212
|
[49]
|
Khan, M., Khan, M.S.A., Borah, K.K., Goswami, Y., Hakeem, K.R. and Chakrabartty, I. (2021) The Potential Exposure and Hazards of Metal-Based Nanoparticles on Plants and Environment, with Special Emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A Review. Environmental Advances, 6, Article ID: 100128. https://doi.org/10.1016/j.envadv.2021.100128
|
[50]
|
Ihtisham, M., Noori, A., Yadav, S., Sarraf, M., Kumari, P., Brestic, M., et al. (2021) Silver Nanoparticle’s Toxicological Effects and Phytoremediation. Nanomaterials, 11, Article No. 2164. https://doi.org/10.3390/nano11092164
|
[51]
|
Sarkar, M. (2022) Effect of Silver Nanoparticles on Nitrogen-Cycling Bacteria in Constructed Wetlands. Nanotechnology for Environmental Engineering, 7, 537-559. https://doi.org/10.1007/s41204-021-00192-3
|
[52]
|
Zaheer Ud Din, S., Shah, K., Bibi, N., H.Mahboub, H. and Kakakhel, M.A. (2023) Recent Insights into the Silver Nanomaterials: an Overview of Their Transformation in the Food Webs and Toxicity in the Aquatic Ecosystem. Water, Air, & Soil Pollution, 234, Article No. 114. https://doi.org/10.1007/s11270-023-06134-w
|
[53]
|
Jiang, H.S., Yin, L., Ren, N.N., Xian, L., Zhao, S., Li, W. and Gontero, B. (2017) The Effect of Chronic Silver Nanoparticles on Aquatic System in Microcosms. Environmental Pollution, 223, 395-402. https://doi.org/10.1016/j.envpol.2017.01.036
|
[54]
|
Babaei, M., Tayemeh, M.B., Jo, M.S., Yu, I.J. and Johari, S.A. (2022) Trophic Transfer and Toxicity of Silver Nanoparticles along a Phytoplankton-Zooplankton-Fish Food Chain. Science of the Total Environment, 842, Article ID: 156807. https://doi.org/10.1016/j.scitotenv.2022.156807
|
[55]
|
Dang, F., Huang, Y., Wang, Y., Zhou, D. and Xing, B. (2021) Transfer and Toxicity of Silver Nanoparticles in the Food Chain. Environmental Science: Nano, 8, 1519-1535. https://doi.org/10.1039/D0EN01190H
|
[56]
|
Khoshnamvand, M., Hao, Z., Fadare, O.O., Hanachi, P., Chen, Y. and Liu, J. (2020) Toxicity of Biosynthesized Silver Nanoparticles to Aquatic Organisms of Different Trophic Levels. Chemosphere, 258, Article ID: 127346. https://doi.org/10.1016/j.chemosphere.2020.127346
|
[57]
|
Ostaszewska, T., Chojnacki, M., Kamaszewski, M. and Sawosz-Chwalibóg, E. (2016) Histopathological Effects of Silver and Copper Nanoparticles on the Epidermis, Gills, and Liver of Siberian sturgeon. Environmental Science and Pollution Research, 23, 1621-1633. https://doi.org/10.1007/s11356-015-5391-9
|
[58]
|
Li, S., Li, Z., Ke, X., Wu, L. and Christie, P. (2022) Biological Transfer of Silver under Silver Nanoparticle Exposure and Nitrogen Transfer via a Collembolan-Predatory Mite Food-Chain and Ecotoxicity of Silver Sulfide. Soil Ecology Letters, 4, 435-443. https://doi.org/10.1007/s42832-021-0125-z
|
[59]
|
Biswas, J.K., Rai, M., Ingle, A.P., Mondal, M. and Biswas, S. (2018) Nano-Bio Interactions and Ecotoxicity in Aquatic Environment: Plenty of Room at the Bottom but Tyranny at the Top! In: Rai, M. and Biswas, J., Eds., Nanomaterials: Ecotoxicity, Safety, and Public Perception, Springer, Cham, 19-36. https://doi.org/10.1007/978-3-030-05144-0_2
|
[60]
|
Grün, A.L., Straskraba, S., Schulz, S., Schloter, M. and Emmerling, C. (2018) Long-Term Effects of Environmentally Relevant Concentrations of Silver Nanoparticles on Microbial Biomass, Enzyme Activity, and Functional Genes Involved in the Nitrogen Cycle of Loamy Soil. Journal of Environmental Sciences, 69, 12-22. https://doi.org/10.1016/j.jes.2018.04.013
|
[61]
|
Eivazi, F., Afrasiabi, Z. and Jose, E. (2018) Effects of Silver Nanoparticles on the Activities of Soil Enzymes Involved in Carbon and Nutrient Cycling. Pedosphere, 28, 209-214. https://doi.org/10.1016/S1002-0160(18)60019-0
|
[62]
|
de Oca-Vásquez, G.M., Solano-Campos, F., Vega-Baudrit, J.R., López-Mondéjar, R., Odriozola, I., Vera, A., Moreno, J.L. and Bastida, F. (2020) Environmentally Relevant Concentrations of Silver Nanoparticles Diminish Soil Microbial Biomass but Do Not Alter Enzyme Activities or Microbial Diversity. Journal of Hazardous Materials, 391, Article ID: 122224. https://doi.org/10.1016/j.jhazmat.2020.122224
|
[63]
|
Huang, D., Dang, F., Huang, Y., Chen, N. and Zhou, D. (2022) Uptake, Translocation, and Transformation of Silver Nanoparticles in Plants. Environmental Science: Nano, 9, 12-39. https://doi.org/10.1039/D1EN00870F
|
[64]
|
Falanga, A., Siciliano, A., Vitiello, M., Franci, G., Del Genio, V., Galdiero, S., et al. (2020) Ecotoxicity Evaluation of Pristine and Indolicidin-Coated Silver Nanoparticles in Aquatic and Terrestrial Ecosystem. International Journal of Nanomedicine, 15, 8097-8108. https://doi.org/10.2147/IJN.S260396
|
[65]
|
Mao, B.H., Chen, Z.Y., Wang, Y.J. and Yan, S.J. (2018) Silver Nanoparticles Have Lethal and Sublethal Adverse Effects on Development and Longevity by Inducing ROS-Mediated Stress Responses. Scientific Reports, 8, Article No. 2445. https://doi.org/10.1038/s41598-018-20728-z
|
[66]
|
Rezvani, E., Rafferty, A., McGuinness, C. and Kennedy, J. (2019) Adverse Effects of Nanosilver on Human Health and the Environment. Acta Biomaterialia, 94, 145-159. https://doi.org/10.1016/j.actbio.2019.05.042
|
[67]
|
Mariano, S., Panzarini, E., Inverno, M.D., Voulvoulis, N. and Dini, L. (2020) Toxicity, Bioaccumulation and Biotransformation of Glucose-Capped Silver Nanoparticles in Green Microalgae Chlorella vulgaris. Nanomaterials, 10, Article No. 1377. https://doi.org/10.3390/nano10071377
|
[68]
|
Lekamge, S., Miranda, A.F., Ball, A.S., Shukla, R. and Nugegoda, D. (2019) The Toxicity of Coated Silver Nanoparticles to Daphnia carinata and Trophic Transfer from Alga Raphidocelis subcapitata. PLOS ONE, 14, e0214398. https://doi.org/10.1371/journal.pone.0214398
|
[69]
|
Grasso, A., Ferrante, M., Arena, G., Salemi, R., Zuccarello, P., Fiore, M. and Copat, C. (2021) Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure. International Journal of Environmental Research and Public Health, 18, Article No. 4076. https://doi.org/10.3390/ijerph18084076
|
[70]
|
Kumar, C.V., Karthick, V., Kumar, V.G., Inbakandan, D., Rene, E.R., Suganya, K.U., et al. (2022) The Impact of Engineered Nanomaterials on the Environment: Release Mechanism, Toxicity, Transformation, and Remediation. Environmental Research, 212, Article ID: 113202. https://doi.org/10.1016/j.envres.2022.113202
|
[71]
|
Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.S. and Chen, G. (2015) Silver Nanoparticles: Synthesis, Properties, and Therapeutic Applications. Drug Discovery Today, 20, 595-601. https://doi.org/10.1016/j.drudis.2014.11.014
|
[72]
|
Hou, J., Zhou, Y., Wang, C., Li, S. and Wang, X. (2017) Toxic Effects and Molecular Mechanism of Different Types of Silver Nanoparticles to the Aquatic Crustacean Daphnia magna. Environmental Science & Technology, 51, 12868-12878. https://doi.org/10.1021/acs.est.7b03918
|
[73]
|
Ramzan, U., Majeed, W., Hussain, A.A., Qurashi, F., Qamar, S.U.R., Naeem, M., et al. (2022) New Insights for Exploring the Risks of Bioaccumulation, Molecular Mechanisms, and Cellular Toxicities of AgNPs in Aquatic Ecosystem. Water, 14, Article No. 2192. https://doi.org/10.3390/w14142192
|
[74]
|
Bakunina, N., Pariante, C.M. and Zunszain, P.A. (2015) Immune Mechanisms Linked to Depression via Oxidative Stress and Neuroprogression. Immunology, 144, 365-373. https://doi.org/10.1111/imm.12443
|
[75]
|
Singh, N., Nelson, B.C., Scanlan, L.D., Coskun, E., Jaruga, P. and Doak, S.H. (2017) Exposure to Engineered Nanomaterials: Impact on DNA Repair Pathways. International Journal of Molecular Sciences, 18, Article No. 1515. https://doi.org/10.3390/ijms18071515
|
[76]
|
Horstmann, C., Davenport, V., Zhang, M., Peters, A. and Kim, K. (2021) Transcriptome Profile Alterations with Carbon Nanotubes, Quantum Dots, and Silver Nanoparticles: A Review. Genes, 12, Article No. 794. https://doi.org/10.3390/genes12060794
|
[77]
|
Kamaruzzaman, N.F., Tan, L.P., Hamdan, R.H., Choong, S.S., Wong, W.K., Gibson, A.J., Chivu, A. and de Fatima Pina, M. (2019) Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? International Journal of Molecular Sciences, 20, Article No. 2747. https://doi.org/10.3390/ijms20112747
|
[78]
|
Nelson, B.C., Minelli, C., Doak, S.H. and Roesslein, M. (2020) Emerging Standards and Analytical Science for Nanoenabled Medical Products. Annual Review of Analytical Chemistry, 13, 431-452. https://doi.org/10.1146/annurev-anchem-091619-102216
|
[79]
|
Ma, Z., Bao, G. and Li, J. (2021) Multifaceted Design and Emerging Applications of Tissue Adhesives. Advanced Materials, 33, Article ID: 2007663. https://doi.org/10.1002/adma.202007663
|
[80]
|
Sen, C.K., Roy, S., Mathew-Steiner, S.S. and Gordillo, G.M. (2021) Biofilm Management in Wound Care. Plastic and Reconstructive Surgery, 148, 275e-288e. https://doi.org/10.1097/PRS.0000000000008142
|
[81]
|
Bumbudsanpharoke, N. and Ko, S. (2015) Nano-Food Packaging: An Overview of Market, Migration Research, and Safety Regulations. Journal of Food Science, 80, R910-R923. https://doi.org/10.1111/1750-3841.12861
|
[82]
|
Perera, K.Y., Jaiswal, S. and Jaiswal, A.K. (2022) A Review on Nanomaterials and Nanohybrids Based Bio-Nanocomposites for Food Packaging. Food Chemistry, 376, Article ID: 131912. https://doi.org/10.1016/j.foodchem.2021.131912
|
[83]
|
Li, Y. and Cummins, E. (2020) Hazard Characterization of Silver Nanoparticles for Human Exposure Routes. Journal of Environmental Science and Health, Part A, 55, 704-725. https://doi.org/10.1080/10934529.2020.1735852
|
[84]
|
Xu, F., Piett, C., Farkas, S., Qazzaz, M. and Syed, N.I. (2013) Silver Nanoparticles (AgNPs) Cause Degeneration of Cytoskeleton and Disrupt Synaptic Machinery of Cultured Cortical Neurons. Molecular Brain, 6, Article No. 29. https://doi.org/10.1186/1756-6606-6-29
|