[1]
|
Elnakady, Y.A., Rushdi, A.I., Franke, R., Abutaha, N., Ebaid, H., Baabbad, M., Omar, M.O.M. and Al Ghamdi, A.A. (2017) Characteristics, Chemical Compositions and Biological Activities of Propolis from Al-Bahah, Saudi Arabia. Scientific Reports, 7, Article No. 41453. https://doi.org/10.1038/srep41453
|
[2]
|
Rufatto, L.C., dos Santos, D.A., Marinho, F., Henriques, J.A.P., Ely, M.R. and Moura, S. (2017) Red Propolis: Chemical Composition and Pharmacological Activity. Asian Pacific Journal of Tropical Biomedicine, 7, 591-598. https://doi.org/10.1016/j.apjtb.2017.06.009
|
[3]
|
Veiga, R.S., De Mendonça, S., Mendes, P.B., Paulino, N., Mimica, M.J., Lagareiro Netto, A.A., Lira, I.S., López, B.G., Negrão, V. and Marcucci, M.C. (2017) Artepillin C and Phenolic Compounds Responsible for Antimicrobial and Antioxidant Activity of Green Propolis and Baccharis dracunculifolia DC. Journal of Applied Microbiology, 122, 911-920. https://doi.org/10.1111/jam.13400
|
[4]
|
Osés, S.M., Marcos, P., Azofra, P., de Pablo, A., Fernández-Muíño, M.á. and Sancho, M.T. (2020) Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants, 9, Article 75. https://doi.org/10.3390/antiox9010075
|
[5]
|
Alvareda, E., Iribarne, F., Espinosa, V., Miranda, P., Santi, D., Aguilera, S., Bustos, S. and Zunini, M.P. (-2019) In Silico and in Vitro Approach for the Understanding of the Xanthine Oxidase Inhibitory Activity of Uruguayan Tannat Grape Pomace and Propolis Poliphenols. Journal of Biophysical Chemistry, 10, 1-14. https://doi.org/10.4236/jbpc.2019.101001
|
[6]
|
Fabris, F., Bertelle, M., Astafyeva, O., Gregoris, E., Zangrando, R., Gambaro, A., Lima, G.P.P. and Stevanato, R. (2013) Antioxidant Properties and Chemical Composition Relationship of Europeans and Brazilians Propolis. Pharmacology & Pharmacy, 4, 46-51. https://doi.org/10.4236/pp.2013.41006
|
[7]
|
Huang, S.A., Zhang, C.P., Wang, K., Li, G.Q. and Hu, F.L. (2014) Recent Advances in the Chemical Composition of Propolis. Molecules, 19, 19610-19632. https://doi.org/10.3390/molecules191219610
|
[8]
|
Irigoiti, Y., Navarro, A., Yamul, D., Libonatti, C., Tabera, A. and Basualdo, M. (2021) The Use of Propolis as a Functional Food Ingredient: A Review. Trends in Food Science & Technology, 115, 297-306. https://doi.org/10.1016/j.tifs.2021.06.041
|
[9]
|
Peixoto, M., Freitas, A.S., Cunha, A., Oliveira, R. and Almeida-Aguiar C. (2021) Antioxidant and Antimicrobial Activity of Blends of Propolis Samples Collected in Different Years. LWT, 145, Article ID: 111311. https://doi.org/10.1016/j.lwt.2021.111311
|
[10]
|
Kinasih, I., Julita, U., Suryani, Y., Cahyanto, T., Khoirunnisa, E.M. and Putra, R.E. (2021) Comparing the Effect of Two Coating Methods of Tetragonula laeviceps Propolis Water Extraction on Physical Quality and Shelf Life of Eggskept in Room Temperature. Malaysian Applied Biology, 49, 75-79. https://doi.org/10.55230/mabjournal.v49i2.1526
|
[11]
|
Huang, R.Y., Pei, L.L., Liu, Q.J., Chen, S.Q., Dou, H.B., Shu, G., Yuan, Z.X., Lin, J.C., Peng, G.N., Zhang, W. and Fu, H.L. (2019) Isobologram Analysis: A Comprehensive Review of Methodology and Current Research. Frontiers in Pharmacology, 10, Article 1222. https://doi.org/10.3389/fphar.2019.01222
|
[12]
|
Velásquez, P., Giordano, A., Valenzuela, L.M. and Montenegro, G. (2022) Combined Antioxidant Capacity of Chilean Bee Hive Products Using Mixture Design Methodology. LWT, 155, Article ID: 112982. https://doi.org/10.1016/j.lwt.2021.112982
|
[13]
|
Peixoto, M., Freitas, A. S., Cunha, A., Oliveira, R., and Almeida-Aguiar, C. (2022). Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization? Antibiotics, 11, Article 1181. https://doi.org/10.3390/antibiotics11091181
|
[14]
|
Silva, B.B., Rosalen, P.L., Cury, J.A., Ikegaki, M., Souza, V.C., Esteves, A. and Alencar, S.M. (2008) Chemical Composition and Botanical Origin of Red Propolis, a New Type of Brazilian Propolis. Evidence-Based Complementary and Alternative Medicine, 5, 313-316. https://doi.org/10.1093/ecam/nem059
|
[15]
|
Bhargava, P., Mahanta, D., Kaul, A., Ishida, Y., Terao, K., Wadhwa, R. and Kaul, S.C. (2021) Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients, 13, Article 2528. https://doi.org/10.3390/nu13082528
|
[16]
|
Brasil (2022) Lista de IGs Nacionais e Internacionais Registradas. Ministério da Agricultura e Pecuária, Brasília. https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/indicacao-geografica/listaigs
|
[17]
|
Rufatto, L.C., Luchtenberg, P., Garcia, C., Thomassigny, C., Bouttier, S., Henriques, J., Roesch-Ely, M., Dumas, F. and Moura, S. (2018) Brazilian Red Propolis: Chemical Composition and Antibacterial Activity Determined Using Bioguided Fractionation. Microbiological Research, 214, 74-82. https://doi.org/10.1016/j.micres.2018.05.003
|
[18]
|
Jorge, R., Furtado, N.A.J.C., Sousa, J.P.B., da Silva Filho, A.A., Gregório Junior, L.E., Martins, C.H.G., Soares, A.E.E., Bastos, J.K., Cunha, W.R. and Silva, M.L.A. (2008) Brazilian Propolis: Seasonal Variation of the Prenylated p-Coumaric Acids and Antimicrobial Activity. Pharmaceutical Biology, 46, 889-893. https://doi.org/10.1080/13880200802370373
|
[19]
|
Moise, A.R. and Bobiş, O. (2020). Baccharis dracunculifolia and Dalbergia ecastophyllum, Main Plant Sources for Bioactive Properties in Green and Red Brazilian Propolis. Plants, 9, Article 1619. https://doi.org/10.3390/plants9111619
|
[20]
|
Aldana-Mejía, J.A., Ccana-Ccapatinta, G.V., Squarisi, I.S., Nascimento, S., Tanimoto, M.H., Ribeiro, V.P., Arruda, C., Nicolella, H., Esperandim, T., Ribeiro, A.B., de Freitas, K.S., da Silva, L.H.D., Ozelin, S.D., Oliveira, L.T.S., Melo, A.L.A., Tavares, D.C. and Bastos, J.K. (2021) Nonclinical Toxicological Studies of Brazilian Red Propolis and Its Primary Botanical Source Dalbergia ecastaphyllum. Chemical Research in Toxicology, 34, 1024-1033. https://doi.org/10.1021/acs.chemrestox.0c00356
|
[21]
|
Ferreira, J.C., Reis, M.B., Coelho, G.D.P., Gastaldello, G.H., Peti, A.P.F., Rodrigues, D.M., Bastos, J.K., Campo, V.L., Sorgi, C.A., Faccioli, L.H., Gardinassi, L.G., Tefé-Silva, C. and Zoccal, K.F. (2021) Baccharin and p-Coumaric Acid from Green Propolis Mitigate Inflammation by Modulating the Production of Cytokines and Eicosanoids. Journal of Ethnopharmacology, 278, Article ID: 114255. https://doi.org/10.1016/j.jep.2021.114255
|
[22]
|
Park, Y.K., Paredes-Guzman, J.F., Aguiar, C.L., Alencar, S.M. and Fujiwara, F.Y. (2004) Chemical Constituents in Baccharis dracunculifolia as the Main Botanical Origin of Southeastern Brazilian Propolis. Journal of Agricultural and Food Chemistry, 52, 1100-1103. https://doi.org/10.1021/jf021060m
|
[23]
|
Salatino, A., Teixeira, E.W., Negri, G. and Message, D. (2005) Origin and Chemical Variation of Brazilian Propolis. Evidence-Based Complementary and Alternative Medicine, 2, 33-38. https://doi.org/10.1093/ecam/neh060
|
[24]
|
Salatino, A., Salatino, M.L.F. and Negri, G. (2021) How Diverse Is the Chemistry and Plant Origin of Brazilian Propolis? Apidologie, 52, 1075-1097. https://doi.org/10.1007/s13592-021-00889-z
|
[25]
|
Ribeiro, V.P., Mejia, J.A.A., Rodrigues, D.M., Alves, G.R., de Freitas Pinheiro, A.M., Tanimoto, M.H., Bastos, J.K. and Ambrósio, S.R. (2023) Brazilian Brown Propolis: An Overview about Its Chemical Composition, Botanical Sources, Quality Control, and Pharmacological Properties. Revista Brasileira de Farmacognosia: Orgao Oficial da Sociedade Brasileira de Farmacognosia, 33, 288-299. https://doi.org/10.1007/s43450-023-00374-x
|
[26]
|
Oliveira, V.B., Yamada, L.T., Fagg, C.W. and Brandão, M.G.L. (2012) Native Foods from Brazilian Biodiversity as a Source of Bioactive Compounds. Food Research International, 48, 170-179. https://doi.org/10.1016/j.foodres.2012.03.011
|
[27]
|
Brasil (2020) Flora do Brasil. Jardim Botanico do Rio de Janeiro, Rio de Janeiro. https://dspace.jbrj.gov.br/jspui/bitstream/doc/118/5/Flora%202020%20digital.pdf
|
[28]
|
Park, Y.K., Ikegaki, M. and Alencar, S.M. (2000) Classificação das própolis brasileira a partir de suas características fisico-químicas e propriedades biológicas. Mensagem Doce, 58. https://www.apacame.org.br/mensagemdoce/58/artigo.htm
|
[29]
|
Costa, A.G., Yoshida, N.C., Garcez, W.S., Perdomo, R.T., Matos, M.F.C. and Garcez, F.R. (2020) Metabolomics Approach Expands the Classification of Propolis Samples from Midwest Brazil. Journal of Natural Products, 83, 333-343. https://doi.org/10.1021/acs.jnatprod.9b00783
|
[30]
|
Ishida, V.F.D., Negri, G., Salatino, A. and Bandeira, M.F.C.L. (2011) A New Type of Brazilian Propolis: Prenylated Benzophenones in Propolis from Amazon and Effects against Cariogenic Bactéria. Food Chemistry, 125, 966-972. https://doi.org/10.1016/j.foodchem.2010.09.089
|
[31]
|
Santos, M.F.C., Oliveira, L.C., Ribeiro, V.P., Soares, M.G., Morae, G.O.I., Sartori, A.G.O., Rosalen, P.L., Bastos, J.K., de Alencar, S.M., Veneziani, R.C.S. and Ambrósio, S.R. (2021) Isolation of Diterpenes from Araucaria sp Brazilian Brown Propolis and Development of a Validated High-Performance Liquid Chromatography Method for Its Analysis. Journal of Separation Science, 44, 3089-3097. https://doi.org/10.1002/jssc.202100374
|
[32]
|
Fernandes-Silva, C.C., Teixeira, E.W., Alves, M.L.T.M.F., Negri, G., Salatino, M.L.F. and Salatino, A. (2021) Propolis Obtained in a Clearing inside the Atlantic Forest in Ubatuba (São Paulo state, Brazil): Essential Oil and Possible Botanical Origin. Journal of Apicultural Research, 60, 853-861. https://doi.org/10.1080/00218839.2020.1797994
|
[33]
|
Brasil (2001) Instrução normativa SDA n° 03, de 19 de janeiro de 2001. Diário Oficial da União, Brasília. https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?jornal=1&pagina=46&data=23/01/2001
|
[34]
|
Brasil (2021) Resolução RDC No 466, de 10 de fevereiro de 2021. Diário Oficial da União, Brasília. https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-466-de-10-de-fevereiro-de-2021-303765551
|
[35]
|
Bankova, V., Trusheva, B. and Popova, M. (2021) Propolis Extraction Methods: A Review. Journal of Apicultural Research, 60, 734-743. https://doi.org/10.1080/00218839.2021.1901426
|
[36]
|
Oroian, M., Dranca, F. and Ursachi, F. (2020) Comparative Evaluation of Maceration, Microwave and Ultrasonic-Assisted Extraction of Phenolic Compounds from Propolis. Journal of Food Science and Technology, 57, 70-78. https://doi.org/10.1007/s13197-019-04031-x
|
[37]
|
Santos, T.R.J. and Santana, L. (2022) Conventional and Emerging Techniques for Extraction of Bioactive Compounds from Fruit Waste. Brazilian Journal of Food Technology, 25, 1-18. https://doi.org/10.1590/1981-6723.13021
|
[38]
|
FAO (2020) How to Process Raw Propolis into Propolis Extracts. FAO, Rome. https://teca.apps.fao.org/teca/fr/technologies/8580
|
[39]
|
Contieri, L.S., de Souza Mesquita, L.M., Sanches, V L., Viganó, J., Martinez, J., da Cunha, D.T. and Rostagno, M.A. (2022) Standardization Proposal to Quality Control of Propolis Extracts Commercialized in Brazil: A Fingerprinting Methodology Using a UHPLC-PDA-MS/MS Approach. Food Research International, 161, Article ID: 111846. https://doi.org/10.1016/j.foodres.2022.111846
|
[40]
|
Janani, D., Lad, S.S., Rawson, A., Sivanandham, V. and Rajamani, M. (2022) Effect of Microwave and Ultrasound-Assisted Extraction Methods on Phytochemical Extraction of Bee Propolis of Indian Origin and Its Antibacterial Activity. International Journal of Food Science and Technology, 57, 7205-7213. https://doi.org/10.1111/ijfs.16066
|
[41]
|
Keskin, S. (2020) Orange Peel Volatile Oil: A Green Solvent for Propolis Extraction, Enhanced β-Amylase Inhibition Activity. Flavour and Fragrance Journal, 35, 411-416. https://doi.org/10.1002/ffj.3576
|
[42]
|
Quatrin, A., Pauletto, R., Maurer, L.H., Minuzzi, N., Nichelle, S.M., Carvalho, J.F. C., Maróstica, M.R., Rodrigues, E., Bochi, V.C. and Emanuelli, T. (2019) Characterization and Quantification of Tannins, Flavonols, Anthocyanins and Matrix-Bound Polyphenols from Jaboticaba Fruit Peel: A Comparison between M. trunciflora and M. jaboticaba. Journal of Food Composition and Analysis, 78, 59-74. https://doi.org/10.1016/j.jfca.2019.01.018
|
[43]
|
Brazil (2019) Manual de Métodos Oficiais para Análise de Alimentos de Origem Animal. 2nd Edition, MAPA, Brasília, 73-74. https://www.gov.br/agricultura/pt-br/assuntos/laboratorios/credenciamento-e-laboratorios-credenciados/legislacao-metodos-credenciados/produtos-de-origem-animal
|
[44]
|
Neto, B.B., Scarminio, I.S. and Bruns, R.E. (2003) Como fazer experimentos: Pesquisa e desenvolvimento na ciência e na indústria. Editora da Unicamp, Campinas.
|
[45]
|
Baj, T., Baryluk, A. and Sieniawska, E. (2018) Application of Mixture Design for Optimum Antioxidant Activity of Mixtures of Essential Oils from Ocimum basilicum L., Origanum majorana L. and Rosmarinus officinalis L. Industrial Crops and Products, 115, 52-61. https://doi.org/10.1016/j.indcrop.2018.02.006
|
[46]
|
Ou, B., Hampsch-Woodill, M. and Prior, R.L. (2001) Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescente. Journal of Agricultural and Food Chemistry, 49, 4619-4629. https://doi.org/10.1021/jf010586o
|
[47]
|
Abeyrathne, E.D.N.S., Nam, K. and Ahn, D.U. (2021) Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants, 10, Article 1587. https://www.mdpi.com/2076-3921/10/10/1587 https://doi.org/10.3390/antiox10101587
|
[48]
|
Echegaray, N., Pateiro, M., Munekata, P.E.S., Lorenzo, J.M., Chabani, Z., Farag, M.A. and Domínguez, R. (2021) Measurement of Antioxidant Capacity of Meat and Meat Products: Methods and Applications. Molecules, 26, Article 3880. https://doi.org/10.3390/molecules26133880
|
[49]
|
Saoudi, S., Chammem, N., Sifaoui, I., Jiménez, I.A., Lorenzo-Morales, J., Piñero, J.E., Bouassida-Beji, M., Hamdi, M. and Bazzocchi, I. (2017) Combined Effect of Carnosol, Rosmarinic Acid and Thymol on the Oxidative Stability of Soybean Oil Using a Simplex Centroid Mixture Design. Journal of the Science of Food and Agriculture, 97, 3300-3311. https://doi.org/10.1002/jsfa.8179
|
[50]
|
Skroza, D., Mekinic, I.G., Svilovic, S., Simat, V. and Katalinic, V. (2015) Investigation of the Potential Synergistic Effect of Resveratrol with Other Phenolic Compounds: A Case of Binary Phenolic Mixtures. Journal of Food Composition and Analysis, 38, 13-18. https://doi.org/10.1016/j.jfca.2014.06.013
|
[51]
|
Crespo, Y.A., Sanchez, L.R.B., Quintana, Y.G., Cabrera, A.S.T., del Sol, A.B. and Mayancha, D.M.G. (2019) Evaluation of the Synergistic Effects of Antioxidant Activity on Mixtures of the Essential Oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. Using Simplex-Lattice Design. Heliyon, 5, E01942. https://doi.org/10.1016/j.heliyon.2019.e01942
|
[52]
|
Fakayode, O.A. and Abobi, K.E. (2018) Optimization of Oil and Pectin Extraction from Orange (Citrus sinensis) Peels: A Response Surface Approach. Journal of Analytical Science and Technology, 9, Article No. 20. https://doi.org/10.1186/s40543-018-0151-3
|
[53]
|
Mahzir, K.A.M., Gani, S.S.A., Zaidan, U.H. and Halmi, M.I.E. (2018) Development of Phaleria macrocarpa (Scheff.) Boerl Fruits Using Response Surface Methodology Focused on Phenolics, Flavonoids and Antioxidant Properties. Molecules, 23, Article 724. https://doi.org/10.3390/molecules23040724
|
[54]
|
Oliveira, T.I.F. (2015) Efeitos tóxicos de amostras de propolis Português: Potencial antioxidante e atividades biológicas de extratos e misturas. Mestrado, Universidade do Minho, Braga. http://repositorium.sdum.uminho.pt/handle/1822/37479
|
[55]
|
Nascimento, T.G., Arruda, R.E.D., Almeida, E.T.D., Oliveira, J.M.D., Basilio, I.D., Porto, I., Sabino, A.R., Tonholo, J., Gray, A., Ebel, R.E., Clements, C., Zhang, T. and Watson, D.G. (2019) Comprehensive Multivariate Correlations between Climatic Effect, Metabolite-Profile, Antioxidant Capacity and Antibacterial Activity of Brazilian Red Propolis Metabolites during Seasonal Study. Scientific Reports, 9, Article No. 18293. https://doi.org/10.1038/s41598-019-54591-3
|
[56]
|
Ferreira, J.M., Fernandes-Silva, C.C., Salatino, A., Negri, G. and Message, D. (2017) New Propolis Type from North-East Brazil: Chemical Composition, Antioxidant Activity and Botanical Origin. Journal of the Science of Food and Agriculture, 97, 3552-3558. https://doi.org/10.1002/jsfa.8210
|
[57]
|
Souza, R.M., de Souza, M.C., Patitucci, M.L. and Silva, J.F.M. (2007) Evaluation of Antioxidant and Antimicrobial Activities and Characterization of Bioactive Components of Two Brazilian Propolis Samples Using a pKa-Guided Fractionation. Journal of Biosciences: Zeitschrift für Naturforschung, 62, 801-807. https://doi.org/10.1515/znc-2007-11-1205
|
[58]
|
Guo, Y., Baschieri, A., Amorati, R. and Valgimgli, L. (2021) Synergic Antioxidant Activity of γ-Terpinene with Phenols and Polyphenols Enabled by Hydroperoxyl Radicals. Food Chemistry, 345, Article ID: 128468. https://doi.org/10.1016/j.foodchem.2020.128468
|
[59]
|
Liu, H., Wang, D., Ren, Y., Wang, L., Weng, T., Liu, J., Wu, Y., Ding, Z. and Liu, M. (2022) Multispectroscopic and Synergistic Antioxidant Study on the Combined Binding of Caffeic Acid and (-)-Epicatechin Gallate to Lysozyme. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 272, Article ID: 120986. https://doi.org/10.1016/j.saa.2022.120986
|