|
[1]
|
Coles, M.E., Forga, A.J., Señas-Cuesta, R., Graham, B.D., Selby, C.M., Uribe, A.J., et al. (2021) Assessment of Lippia origanoides Essential Oils in a Salmonella Typhimurium, Eimeria maxima, and Clostridium perfringens Challenge Model to Induce Necrotic Enteritis in Broiler Chickens. Animals, 11, 1111. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cobb500 Broiler Performance & Nutrition Supplement (2022). https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/5502e86566/2022-Cobb500-Broiler-Performance-Nutrition-Supplement.pdf
|
|
[3]
|
Zeng, Z., Zhang, S., Wang, H. and Piao, X. (2015) Essential Oil and Aromatic Plants as Feed Additives in non-Ruminant Nutrition: A Review. Journal of Animal Science and Biotechnology, 6, 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Saadat Shad, H., Mazhari, M., Esmaeilipour, O. and Khosravinia, H. (2016) Effects of Thymol and Carvacrol on Productive Performance, Antioxidant Enzyme Activity and Certain Blood Metabolites in Heat Stressed Broilers. Iranian Journal of Applied Animal Science, 6, 195-202.
|
|
[5]
|
Turcu, R.P., Tabuc, C., Vlaicu, P.A., Panaite, T.D., Buleandra, M. and Saracila, M. (2018) Effect of the Dietary Oregano (Origanum vulgare L.) Powder And Oil on the Balance of the Intestinal Microflora of Broilers Reared under Heat Stress (32 °C). In: Scientific Papers: Series D, Animal Science—The International Session of Scientific Communications of the Faculty of Animal Science, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania, 77-86.
|
|
[6]
|
Zhai, H., Liu, H., Wang, S., Wu, J. and Kluenter, A.-M. (2020) Potential of Essential Oils for Poultry and Pigs. Animal Nutrition, 4, 179-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Patra, A.K. (2020) Influence of Plant Bioactive Compounds on Intestinal Epithelial Barrier in Poultry. Mini Reviews in Medicinal Chemistry, 20, 566-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Krishan, G. and Narang, A. (2014) Use of Essential Oils in Poultry Nutrition: A New Approach. Journal of Advanced Veterinary and Animal Research, 1, 156-162. [Google Scholar] [CrossRef]
|
|
[9]
|
De la Mora, Z.V., Macías-Rodríguez, M.E., Arratia-Quijada, J., Gonzalez-Torres, Y.S., Nuño, K. and Villarruel-López, A. (2020) Clostridium perfringens as Foodborne Pathogen in Broiler Production: Pathophysiology and Potential Strategies for Controlling Necrotic Enteritis. Animals, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Adhikari, P., Kiess, A., Adhikari, R. and Jha, R. (2020) An Approach to Alternative Strategies to Control Avian Coccidiosis and Necrotic Enteritis. Journal Applied of Poultry Research, 29, 515-534. [Google Scholar] [CrossRef]
|
|
[11]
|
Hofacre, C.L., Smith, J.A. and Mathis, G.F. (2018) An Optimist’s View on Limiting Necrotic Enteritis and Maintaining Broiler Gut Health and Performance in Today’s Marketing, Food Safety, and Regulatory Climate. Poultry Science, 97, 1929-1933. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Celluzzi, A. and Masotti, A. (2016) How Our Other Genome Controls Our Epi-Genome. Trends in Microbiology, 24, 777-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wallis, J.W., Aerts, J., Groenen, M.A., Crooijmans, R.P., Layman, D., Graves, T.A., et al. (2004) A Physical Map of the Chicken Genome. Nature, 432, 761-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhu, B., Wang, X. and Li, L. (2010) Human Gut Microbiome: The Second Genome of Human Body. Protein and Cell, 1, 718-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Schneider, S., Wright, C.M. and Heuckeroth, R.O. (2019) Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annual Review of Physiology, 81, 235-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bar-Shira, E., Sklan, D. and Friedman, A. (2003) Establishment of Immune Competence in the Avian GALT during the Immediate Post-Hatch Period. Developmental and Comparative Immunology, 27, 147-57. [Google Scholar] [CrossRef]
|
|
[17]
|
Vighi, G., Marcucci, F., Sensi, L., Di Cara, G. and Frati, F. (2008) Allergy and the Gastrointestinal System. Clinical and Experimental Immunology, 153, 3-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gribble, F.M. and Reimann, F. (2019) Function and Mechanisms of Enteroendocrine Cells and Gut Hormones in Metabolism. Nature Reviews, Endocrinology, 15, 226-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bloom, S.R. (1987) Gut Hormones in Adaptation. Gut, 28, 31-35. [Google Scholar] [CrossRef]
|
|
[20]
|
Gribble, F.M. and Reimann, F. (2017) Signalling in the Gut Endocrine Axis. Physiology and Behavior, 176, 183-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lund, M.L., Egerod, K.L., Engelstoft, M.S., Dmytriyeva, O., Theodorsson, E., Patel, B.A., et al. (2018) Enterochromaffin 5-HT Cells-A Major Target for GLP-1 and Gut Microbial Metabolites. Molecular Metabolism, 11, 70-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Forsythe, P., Sudo, N., Dinan, T., Taylor, V.H. and Bienenstock, J. (2010) Mood and Gut Feelings. Brain, Behavior and Immunity, 24, 9-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liang, X., Bushman, F.D. and FitzGerald, G.A. (2014) Time in Motion: The Molecular Clock Meets the Microbiome. Cell, 159, 469-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mayer, E.A., Knight, R., Mazmanian, S.K., Cryan, J.F. and Tillisch, K. (2014) Gut Microbes and the Brain: Paradigm Shift in Neuroscience. The Journal of Neuroscience, 34, 15490-15496. [Google Scholar] [CrossRef]
|
|
[25]
|
Cryan, J.F. and Dinan, T.G. (2012) Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nature Reviews, Neuroscience, 13, 701-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sherwin, E., Rea, K., Dinan, T.G. and Cryan, J.F. (2016) A Gut (Microbiome) Feeling about the Brain. Current Opinion Gastroenterology, 32, 96-102. [Google Scholar] [CrossRef]
|
|
[27]
|
Tellez, G. (2014) Prokaryotes versus Eukaryotes: Who is Hosting Whom? Frontiers in Veterinary Science, 1, 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gordon, S. (2018) Eli Metchnikoff: Father of Natural Immunity. European Journal of Immunology, 38, 3257-3264. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kaufmann, S.H. (2008) Immunology’s Foundation: The 100-Year Anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nature Immunology, 9, 705-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Björkman, I., Röing, M., Sternberg Lewerin, S., Stålsby Lundborg, C. and Eriksen, J. (2021) Animal Production with Restrictive Use of Antibiotics to Contain Antimicrobial Resistance in Sweden—A Qualitative Study. Frontiers in Veterinary Science, 7, Article ID: 619030. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mullenix, G.J., Greene, E.S., Emami, N.K., Tellez-Isaias, G., Bottje, W.G., Erf, G.F., et al. (2021) Spirulina platensis Inclusion Reverses Circulating Pro-Inflammatory (Chemo) Cytokine Profiles in Broilers Fed Low-Protein Diets. Frontiers in Veterinary Science, 8, Article ID: 640968. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sylte, M.J., Sivasankaran, S.K., Trachsel, J., Sato, Y., Wu, Z., Johnson, T.A., et al. (2021) The Acute Host-Response of Turkeys Colonized with Campylobacter coli. Frontiers in Veterinary Science, 8, Article ID: 613203. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Takano, T., Satoh, K. and Doki, T. (2021) Possible Antiviral Activity of 5-Aminolevulinic Acid in Feline Infectious Peritonitis Virus (Feline Coronavirus) Infection. Frontiers in Veterinary Science, 8, Article ID: 647189. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Fasano, A. (2020) All Disease Begins in the (Leaky) Gut: Role of Zonulin-Mediated Gut Permeability in the Pathogenesis of Some Chronic Inflammatory Diseases. F1000Research, 9, F1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sekirov, I., Russell, S.L., Antunes, L.C.M. and Finlay, B.B. (2010) Gut Microbiota in Health and Disease. Physiological Reviews, 90, 859-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dimitrov, D.V. (2011) The Human Gutome: Nutrigenomics of the Host-Microbiome Interactions. OMICS, 15, 419-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wu, R.Y., Määttänen, P., Napper, S., Scruten, E., Li, B., Koike, Y., et al. (2017) Non-Digestible Oligosaccharides Directly Regulate Host Kinome to Modulate Host Inflammatory Responses Without Alterations in the Gut Microbiota. Microbiome, 5, 135. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fukui, H., Xu, X. and Miwa, H. (2018) Role of Gut Microbiota-Gut Hormone Axis in the Pathophysiology of Functional Gastrointestinal Disorders. Journal of Neurogastroenterology and Motility, 24, 367. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Megur, A., Baltriukienè, D., Bukelskienè, V. and Burokas, A. (2021) The Microbiota-Gut-Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? Nutrients, 13, 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Neuman, H., Debelius, J.W., Knight, R. and Koren, O. (2015) Microbial Endocrinology: The Interplay between the Microbiota and the Endocrine System. FEMS Microbiology Reviews, 39, 509-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Maslowski, K.M. and Mackay, C.R. (2010) Diet, Gut Microbiota and Immune Responses. Nature Immunology, 12, 5-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tellez, G., Higgins, S., Donoghue, A. and Hargis, B. (2006) Digestive Physiology and the Role of Microorganisms. Journal of Applied Poultry Research, 15, 136-144. [Google Scholar] [CrossRef]
|
|
[43]
|
Liu, X., Cao, S. and Zhang, X. (2015) Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet. Journal of Agricultural and Food Chemistry, 63, 7885-7895. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chalvon-Demersay, T., Luise, D., Floc’h, L., Tesseraud, S., Lambert, W., Bosi, P., et al. (2021) Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Frontiers in Veterinary Science, 8, Article ID: 663727. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Tlaskalová-Hogenová, H., Stepánková, R., Hudcovic, T., Tucková, L., Cukrowska, B., Lodinová-Zádniková, R., et al. (2004) Commensal Bacteria (Normal Microflora), Mucosal Immunity and Chronic Inflammatory and Autoimmune Diseases. Immunology Letters, 93, 97-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Weiss, G.A. and Hennet, T. (2017) Mechanisms and Consequences of Intestinal Dysbiosis. Cellular and Molecular Life Sciences, 74, 2959-2977. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Tellez, G., Latorre, J.D., Kuttappan, V.A., Kogut, M.H., Wolfenden, A., Hernandez-Velasco, X., et al. (2014) Utilization of Rye as Energy Source Affects Bacterial Translocation, Intestinal Viscosity, Microbiota Composition, and Bone Mineralization in Broiler Chickens. Frontiers in Veterinary Science, 5, 339. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zareie, M., Johnson-Henry, K., Jury, J., Yang, P.-C., Ngan, B.-Y., McKay, D.M., et al. (2006) Probiotics Prevent Bacterial Translocation and Improve Intestinal Barrier Function in Rats Following Chronic Psychological Stress. Gut, 55, 1553-1560. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kallapura, G., Pumford, N.R., Hernandez-Velasco, X., Hargis, B.M. and Tellez, G. (2014) Mechanisms Involved in Lipopolysaccharide Derived ROS and RNS Oxidative Stress and Septic Shock. Journal of Microbiology Research and Reviews, 2, 6-11. [Google Scholar] [CrossRef]
|
|
[50]
|
Stecher, B. (2015) The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiology Spectrum, 3, 3.
|
|
[51]
|
Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., et al. (2016) Eubiosis and Dysbiosis: The Two Sides of the Microbiota. The New Microbiologica, 39, 1-12.
|
|
[52]
|
Lopetuso, L.R., Scaldaferri, F., Petito, V. and Gasbarrini, A. (2013) Commensal Clostridia: Leading Players in the Maintenance of Gut Homeostasis. Gut Pathogens, 5, 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhong, Y., Teixeira, C., Marungruang, N., Sae-Lim, W., Tareke, E. andersson, R., et al. (2015) Barley Malt Increases Hindgut and Portal Butyric Acid, Modulates Gene Expression of Gut Tight Junction Proteins and Toll-Like Receptors in Rats Fed High-Fat Diets, But High Advanced Glycation End-Products Partially Attenuate the Effects. Food and Function, 6, 3165-3176. [Google Scholar] [CrossRef]
|
|
[54]
|
Honneffer, J.B., Minamoto, Y. and Suchodolski, J.S. (2014) Microbiota Alterations in Acute and Chronic Gastrointestinal Inflammation of Cats and Dogs. World Journal of Gastroenterology, 20, Article ID: 16489. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R. and White, B.A. (2008) Polysaccharide Utilization by Gut Bacteria: Potential for New Insights from Genomic Analysis. Nature Reviews Microbiology, 6, 121-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kabeerdoss, J., Sankaran, V., Pugazhendhi, S. and Ramakrishna, B.S. (2013) Clostridium leptum Group Bacteria Abundance and Diversity in the Fecal Microbiota of Patients with Inflammatory Bowel Disease: A Case-Control Study in India. BMC Gastroenterology, 13, 20. [Google Scholar] [CrossRef]
|
|
[57]
|
Wahl, S.M., Swisher, J., McCartney-Francis, N. and Chen, W. (2004) TGF-beta: The Perpetrator of Immune Suppression by Regulatory T Cells and Suicidal T Cells. Journal of Leukocyte Biology, 76, 15-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Bergman, E.N. (1990) Energy Contributions of Volatile Fatty Acids from the Gastrointestinal Tract in Various Species. Physiologycal Reviews, 70, 567-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Schnabl, B. and Brenner, D.A. (2014) Interactions between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 146, 1513-1524. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Segain, J., De La Blétiere, D.R., Bourreille, A., Leray, V., Gervois, N., Rosales, C., et al. (2000) Butyrate Inhibits Inflammatory Responses through NFκB Inhibition: Implications for Crohn’s Disease. Gut, 47, 397-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Livanos, A.E., Snider, E.J., Whittier, S., Chong, D.H., Wang, T.C., Abrams, J.A., et al. (2018) Rapid Gastrointestinal Loss of Clostridial Clusters IV and XIVa in the ICU Associates with an Expansion of Gut Pathogens. PLOS ONE, 13, e0200322. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Takahashi, M., Taguchi, H., Yamaguchi, H., Osaki, T., Komatsu, A. and Kamiya, S. (2004) The Effect of Probiotic Treatment with Clostridium butyricum on Enterohemorrhagic Escherichia coli O157: H7 Infection in Mice. FEMS Immunology and Medical Microbiology, 41, 219-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., et al. (2011) Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature, 469, 543-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Oakley, B.B., Buhr, R.J., Ritz, C.W., Kiepper, B.H., Berrang, M.E., Seal, B.S., et al. (2014) Successional Changes in the Chicken Cecal Microbiome during 42 Days of Growth Are Independent of Organic Acid Feed Additives. BMC Veterinary Research, 10, 282. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Rajput, D.S., Zeng, D., Khalique, A., Rajput, S.S., Wang, H., Zhao, Y., et al. (2020) Pretreatment with Probiotics Ameliorate Gut Health and Necrotic Enteritis in Broiler Chickens, a Substitute to Antibiotics. AMB Express, 10, 220. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Kan, L., Guo, F., Liu, Y., Pham, V.H., Guo, Y. and Wang, Z. (2021) Probiotics Bacillus licheniformis Improves Intestinal Health of Subclinical Necrotic Enteritis-Challenged Broilers. Frontiers in Microbiology, 12, Article ID: 623739. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Khalique, A., Zeng, D., Shoaib, M., Wang, H., Qing, X., Rajput, D.S., et al. (2020) Probiotics Mitigating Subclinical Necrotic Enteritis (SNE) as Potential Alternatives to Antibiotics in Poultry. AMB Express, 10, 50. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Shojadoost, B., Vince, A.R. and Prescott, J.F. (2012) The Successful Experimental induction of Necrotic Enteritis in Chickens by Clostridium perfringens: A Critical Review. Veterinary Research, 43, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Branton, S.L., Lott, B.D., Deaton, J.W., Maslin, W.R., Austin, F.W., Pote, L.M., et al. (1997) The Effect of Added Complex Carbohydrates or Added Dietary Fiber on Necrotic Enteritis Lesions in Broiler Chickens. Poultry Science, 76, 24-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Shivaramaiah, S., Wolfenden, R.E., Barta, J.R., Morgan, M.J., Wolfenden, A.D., Hargis, B.M., et al. (2011) The Role of an Early Salmonella typhimurium Infection as a Predisposing Factor for Necrotic Enteritis in a Laboratory Challenge Model. Avian Diseases, 55, 319-323. [Google Scholar] [CrossRef]
|
|
[71]
|
Willemsen, L.E.M., Koetsier, M.A., Van Deventer, S.J.H. and Van Tol, E.A.F. (2003) Short Chain Fatty Acids Stimulate Epithelial Mucin 2 Expression through Differential Effects on Prostaglandin E1 and E2 Production by Intestinal Myofibroblasts. Gut, 52, 1442-1447. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Cox, C.M., Sumners, L.H., Kim, S., McElroy, A.P., Bedford, M.R. and Dalloul, R.A. (2010) Immune Responses to Dietary β-Glucan in Broiler Chicks during an Eimeria Challenge. Poultry Science, 89, 2597-2607. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Abd El-Hack, M.E., El-Saadony, M.T., Elbestawy, A.R., Nahed, A., Saad, A.M., Salem, H.M., et al. (2021) Necrotic Enteritis in Broiler Chickens: Disease Characteristics and Prevention Using Organic Antibiotic Alternatives: A Comprehensive Review. Poultry Science, 101, Article ID: 101590. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Van der Sluis, W. (2000) Clostridial Enteritis Is an Often Underestimated Problem. World’s Poultry Science Journal, 16, 42-43.
|
|
[75]
|
Statista (2021) Number of Chickens Worldwide from 1990 to 2020. https://www.statista.com/statistics/263962/number-of-chickens-worldwide-since-1990
|
|
[76]
|
Broom, L. (2017) Necrotic Enteritis; Current Knowledge and Diet-Related Mitigation. World’s Poultry Science Journal, 73, 281-292. [Google Scholar] [CrossRef]
|
|
[77]
|
Emami, N.K. and Dalloul, R.A. (2021) Centennial Review: Recent Developments in Host-Pathogen Interactions during Necrotic Enteritis in Poultry. Poultry Science, 100, Article ID: 101330. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
McDonel, J.L. (1980) Clostridium perfringens Toxins (Type A, B, C, D, E). Pharmacology and Therapeutics, 10, 617-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Uzal, F.A., Freedman, J.C., Shrestha, A., Theoret, J.R., Garcia, J., Awad, M.M., et al. (2014) Towards an Understanding of the Role of Clostridium perfringens Toxins in Human and Animal Disease. Future Microbiology, 9, 361-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Nagahama, M., Ochi, S., Oda, M., Miyamoto, K., Takehara, M. and Kobayashi, K. (2015) Recent Insights into Clostridium perfringens Beta-Toxin. Toxins, 7, 396-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Labbe, R. and Huang, T. (1995) Generation Times and Modeling of Enterotoxin-Positive and Enterotoxin-Negative Strains of Clostridium perfringens in Laboratory Media and Ground Beef. Journal of Food Protection, 58, 1303-1306. [Google Scholar] [CrossRef]
|
|
[82]
|
Kulkarni, R., Parreira, V., Sharif, S. and Prescott, J. (2007) Immunization of Broiler Chickens against Clostridium perfringens-Induced Necrotic Enteritis. Clinical and Vaccine Immunology, 14, 1070-1077. [Google Scholar] [CrossRef]
|
|
[83]
|
Timbermont, L., Haesebrouck, F., Ducatelle, R. and Van Immerseel, F. (2011) Necrotic Enteritis in Broilers: An Updated Review on the Pathogenesis. Avian Pathology, 40, 341-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Timbermont, L., Lanckriet, A., Dewulf, J., Nollet, N., Schwarzer, K., Haesebrouck, F., et al. (2010) Control of Clostridium perfringens-Induced Necrotic Enteritis in Broilers by Target-Released Butyric Acid, Fatty Acids and Essential Oils. Avian Pathology, 39, 117-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
McReynolds, J., Byrd, J. anderson, R., Moore, R., Edrington, T., Genovese, K., et al. (2004) Evaluation of Immunosuppressants and Dietary Mechanisms in an Experimental Disease Model for Necrotic Enteritis. Poultry Science, 83, 1948-1952. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Caly, D.L., D’Inca, R., Auclair, E. and Drider, D. (2015) Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist’s Perspective. Frontiers in Microbiology, 6, 1336. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Riaz, A., Umar, S., Munir, M.T. and Tariq, M. (2017) Replacements of Antibiotics in the Control of Necrotic Enteritis: A Review. Science Letters, 5, 208-216.
|
|
[88]
|
Emami, N.K., White, M.B., Calik, A., Kimminau, E.A. and Dalloul, R.A. (2021) Managing Broilers Gut Health with Antibiotic-Free Diets during Subclinical Necrotic Enteritis. Poultry Science, 100, Article ID: 101055. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Moore, R.J. (2016) Necrotic Enteritis Predisposing Factors in Broiler Chickens. Avian Pathology, 45, 275-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Riddell, C. and Kong, X.M. (1992) The Influence of Diet on Necrotic Enteritis in Broiler Chickens. Avian Diseases, 36, 499-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Branton, S.L., Reece, F.N. and Hagler Jr., WM. (1987) Influence of a Wheat Diet on Mortality of Broiler Chickens Associated with Necrotic Enteritis. Poultry Science, 66, 1326-1330. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Allaart, J.G., van Asten, A.J.A.M. and Gröne, A. (2013) Predisposing Factors and Prevention of Clostridium perfringens-Associated Enteritis. Comparative Immunology Microbiology and Infectious Diseases, 36, 449-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Cogliani, C., Goossens, H. and Greko, C. (2011) Restricting Antimicrobial Use in Food Animals: Lessons from Europe: Banning Nonessential Antibiotic Uses in Food Animals Is Intended to Reduce Pools of Resistance Genes. Microbe Magazine, 6, 274-279. [Google Scholar] [CrossRef]
|
|
[94]
|
Tellez, G., Laukova, A., Latorre, A., Hernandez-Velasco, X., Hargis, B. and Callaway, T. (2015) Food-Producing Animals and Their Health in Relation to Human Health. Microbial Ecology in Health and Disease, 26, 25876. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Tellez-Isaias, V., Christine, N., Brittany, D., Callie, M., Lucas, E., Roberto, S, et al. (2021) Developing Probiotics, Prebiotics, and Organic Acids to Control Salmonella spp. in Commercial Turkeys at the University of Arkansas USA. German Journal of Veterinary Research, 1, 7-12. [Google Scholar] [CrossRef]
|
|
[96]
|
Wu, Y., Zhen, W., Geng, Y., Wang, Z. and Guo, Y. (2019) Pretreatment with Probiotic Enterococcus faecium NCIMB 11181 Ameliorates Necrotic Enteritis-Induced Intestinal Barrier Injury in Broiler Chickens. Scientific Reports, 9, Article No. 10256. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Latorre, J.D., Hernandez-Velasco, X., Wolfenden, R.E., Vicente, J.L., Wolfenden, A.D., Menconi, A., et al. (2016) Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry. Frontiers in Veterinary Science, 3, 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Knap, I., Lund, B., Kehlet, A.B., Hofacre, C. and Mathis, G. (2010) Bacillus licheniformis Prevents Necrotic Enteritis in Broiler Chickens. Avian Diseases, 54, 931-935. [Google Scholar] [CrossRef]
|
|
[99]
|
Aljumaah, M.R., Alkhulaifi, M.M., Abudabos, A.M., Aljumaah, R.S., Alsaleh, A.N. and Stanley, D. (2020) Bacillus subtilis PB6 Based Probiotic Supplementation Plays a Role in the Recovery after the Necrotic Enteritis Challenge. PLOS ONE, 15, e0232781. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Torres-Rodriguez, A., Higgins, S., Vicente, J., Wolfenden, A., Gaona-Ramirez, G., Barton, J., et al. (2007) Effect of Lactose as a Prebiotic on Turkey Body Weight under Commercial Conditions. Journal of Applied Poultry Research, 16, 635-641. [Google Scholar] [CrossRef]
|
|
[101]
|
Hernandez-Patlan, D., Solis-Cruz, B., Patrin Pontin, K., Latorre, J.D., Baxter, M.F., Hernandez-Velasco, X., et al. (2019) Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens. Animals, 9, 184. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Leyva-Diaz, A.A., Hernandez-Patlan, D., Solis-Cruz, B., Adhikari, B., Kwon, Y.M., Latorre, J.D., et al. (2021) Evaluation of Curcumin and Copper Acetate against Salmonella typhimurium Infection, Intestinal Permeability, and Cecal Microbiota Composition in Broiler Chickens. Journal of Animal Science and Biotechnology, 12, 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Ruff, J., Barros, T.L., Tellez Jr., G., Blankenship, J., Lester, H., Graham, B.D., et al. (2020) Research Note: Evaluation of a Heat Stress Model to Induce Gastrointestinal Leakage in Broiler Chickens. Poultry Science, 99, 1687-1692. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Baxter, M.F., Greene, E.S., Kidd, M.T., Tellez-Isaias, G., Orlowski, S. and Dridi, S. (2020) Water Amino Acid-Chelated Trace Mineral Supplementation Decreases Circulating and Intestinal HSP70 and Proinflammatory Cytokine Gene Expression in Heat-Stressed Broiler Chickens. Journal of Animal Science, 98, skaa049. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Hernandez-Patlan, D., Solis-Cruz, B., Pontin, K.P., Latorre, J.D., Baxter, M.F., Hernandez-Velasco, X., et al. (2018) Evaluation of a Solid Dispersion of Curcumin with Polyvinylpyrrolidone and Boric Acid against Salmonella enteritidis Infection and intestinal Permeability in Broiler Chickens: A Pilot Study. Frontiers in Microbiology, 9, 1289. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Solis-Cruz, B., Hernandez-Patlan, D., Petrone, V.M., Pontin, K.P., Latorre, J.D., Beyssac, E., et al. (2019) Evaluation of a Bacillus-Based Direct-Fed Microbial on Aflatoxin B1 Toxic Effects, Performance, Immunologic Status, and Serum Biochemical Parameters in Broiler Chickens. Avian Diseases, 63, 659-669. [Google Scholar] [CrossRef]
|
|
[107]
|
Petrone-Garcia, V.M., Lopez-Arellano, R., Patiño, G.R., Rodríguez, M.A.C., Hernandez-Patlan, D., Solis-Cruz, B., et al. (2021) Curcumin Reduces Enteric Isoprostane 8-Iso-PGF2α and Prostaglandin GF2α in Specific Pathogen-Free Leghorn Chickens Challenged with Eimeria maxima. Scientific Reports, 11, Article No. 11609. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008) Biological Effects of Essential Oils—A Review. Food Chemical Toxicology, 46, 446-475. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Burt, S. (2004) Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. International Journal of Food Microbiology, 94, 223-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Arfa, A.B., Combes, S., Preziosi-Belloy, L., Gontard, N. and Chalier, P. (2006) Antimicrobial Activity of Carvacrol Related to Its Chemical Structure. Letters in Applied Microbiology, 43, 149-154. [Google Scholar] [CrossRef]
|
|
[111]
|
Mzabi, A., Tanghort, M., Chefchaou, H., Moussa, H., Chami, N., Chami, F., et al. (2019) A Comparative Study of the Anticlostridial Activity of Selected Essential Oils, Their Major Components and a Natural Product with Antibiotics. International Journal Poultry Science, 18, 187-194. [Google Scholar] [CrossRef]
|
|
[112]
|
Franz, C., Baser, K. and Windisch, W. (2010) Essential Oils and Aromatic Plants in Animal Feeding—A European Perspective. A Review. Flavour and Fragrance Journal, 25, 327-340. [Google Scholar] [CrossRef]
|
|
[113]
|
Gopi, M., Karthik, K., Manjunathachar, H.V., Tamilmahan, P., Kesavan, M., Dashprakash, M., et al. (2014) Essential Oils as a Feed Additive in Poultry Nutrition. Advances in Animal and Veterinary Sciences, 2, 1-7. [Google Scholar] [CrossRef]
|
|
[114]
|
He, X., Hao, D., Liu, C., Zhang, X., Xu, D., Xu, X., Wang, J. and Wu, R. (2017) Effect of Supplemental Oregano Essential Oils in Diets on Production Performance and Relatively Intestinal Parameters of Laying Hens. American Journal of Molecular Biology, 7, 73-85. [Google Scholar] [CrossRef]
|
|
[115]
|
Snow Setzer, M., Sharifi-Rad, J. and Setzer, W.N. (2016) The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals. Antibiotics, 5, 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[116]
|
Yanishlieva, N.V., Marinova, E.M., Gordon, M.H. and Raneva, V.G. (1999) Antioxidant Activity and Mechanism of Action of Thymol and Carvacrol in Two Lipid Systems. Food Chemistry, 64, 59-66. [Google Scholar] [CrossRef]
|
|
[117]
|
Eid, N., Dahshan, A., El-Nahass, E.-S., Shalaby, B. and Ali, A. (2018) Anticlostridial Activity of the Thyme and Clove Essential Oils against Experimentally Induced Necrotic Enteritis in Commercial Broiler Chickens. Veterinary Science Research and Reviews, 4, 25-34.
|
|
[118]
|
Gharaibeh, M.H., Khalifeh, M.S., Nawasreh, A.N., Hananeh, W.M. and Awawdeh, M.S. (2012) Assessment of Immune Response and Efficacy of Essential Oils Application on Controlling Necrotic Enteritis Induced by Clostridium perfringens in Broiler Chickens. Molecules, 26, 4527. [Google Scholar] [CrossRef] [PubMed]
|
|
[119]
|
Yang, C., Kennes, Y.M., Lepp, D., Yin, X., Wang, Q., Yu, H., et al. (2020) Effects of Encapsulated Cinnamaldehyde and Citral on the Performance and Cecal Microbiota of Broilers Vaccinated or Not Vaccinated against Coccidiosis. Poultry Science, 99, 936-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
McReynolds, J., Waneck, C., Byrd, J., Genovese, K., Duke, S. and Nisbet, D. (2009) Efficacy of Multistrain Direct-Fed Microbial and Phytogenetic Products in Reducing Necrotic Enteritis in Commercial Broilers. Poultry Science, 88, 2075-2080. [Google Scholar] [CrossRef] [PubMed]
|
|
[121]
|
Lu, P.D. and Zhao, Y.H. (2020) Targeting NF-κB Pathway for Treating Ulcerative Colitis: Comprehensive Regulatory Characteristics of Chinese Medicines. Chinese Medicine, 15, 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[122]
|
Du, E. and Guo, Y. (2021) Dietary Supplementation of Essential Oils and Lysozyme Reduces Mortality and Improves Intestinal Integrity of Broiler Chickens with Necrotic Enteritis. Animal Science Journal, 92, e13499. [Google Scholar] [CrossRef] [PubMed]
|
|
[123]
|
Pham, V.H., Kan, L., Huang, J., Geng, Y., Zhen, W., Guo, Y., et al. (2020) Dietary Encapsulated Essential Oils and Organic Acids Mixture Improves Gut Health in Broiler Chickens Challenged with Necrotic Enteritis. Journal of Animal Science and Biotechnology, 11, 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[124]
|
Si, W., Ni, X., Gong, J., Yu, H., Tsao, R., Han, Y., et al. (2009) Antimicrobial Activity of Essential Oils and Structurally Related Synthetic Food Additives towards Clostridium perfringens. Journal of Applied Microbiology, 106, 213-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[125]
|
Engberg, R.M., Grevsen, K., Ivarsen, E., Fretté, X., Christensen, L.P., Højberg, O., et al. (2012) The Effect of Artemisia annua on Broiler Performance, on Intestinal Microbiota and on the Course of a Clostridium perfringens Infection Applying a Necrotic Enteritis Disease Model. Avian Pathology, 41, 369-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[126]
|
Yin, D., Du, E., Yuan, J., Gao, J., Wang, Y., Aggrey, S.E., et al. (2017) Supplemental Thymol and Carvacrol Increases Ileum Lactobacillus Population and Reduces Effect of Necrotic Enteritis Caused by Clostridium perfringes in Chickens. Scientific Report, 7, Article No. 7334. [Google Scholar] [CrossRef] [PubMed]
|
|
[127]
|
Kumar, A., Toghyani, M., Kheravii, S.K., Pineda, L., Han, Y., Swick, R.A., et al. (2022) Organic Acid Blends Improve Intestinal Integrity, Modulate Short-Chain Fatty Acids Profiles and Alter Microbiota of Broilers under Necrotic Enteritis Challenge. Animal Nutrition, 8, 82-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[128]
|
Pham, V.H., Abbas, W., Huang, J., He, Q., Zhen, W., Guo, Y., et al. (2022) Effect of Blending Encapsulated Essential Oils and Organic Acids as an Antibiotic Growth Promoter Alternative on Growth Performance and Intestinal Health in Broilers with Necrotic Enteritis. Poultry Science, 101, Article ID: 101563. [Google Scholar] [CrossRef] [PubMed]
|
|
[129]
|
Kumar, A., Sharma, N.K., Kheravii, S.K., Keerqin, C., Ionescu, C., Blanchard, A., et al. (2022) Potential of a Mixture of Eugenol and Garlic Tincture to Improve Performance and Intestinal Health in Broilers under Necrotic Enteritis Challenge. Animal Nutrition, 8, 26-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[130]
|
Bortoluzzi, C., Rothrock, M.J., Vieira, B.S., Mallo, J.J., Puyalto, M., Hofacre, C., et al. (2018) Supplementation of Protected Sodium Butyrate Alone or in Combination with Essential Oils Modulated the Cecal Microbiota of Broiler Chickens Challenged with Coccidia and Clostridium perfringens. Frontiers in Sustainable Food Systems, 2, 72. [Google Scholar] [CrossRef]
|
|
[131]
|
Abdelli, N., Pérez, J.F., Vilarrasa, E., Melo-Duran, D., Cabeza Luna, I., Karimirad, R., et al. (2021) Microencapsulation Improved Fumaric Acid and Thymol Effects on Broiler Chickens Challenged with a Short-Term Fasting Period. Frontiers in Veterinary Science, 8, Article ID: 686143. [Google Scholar] [CrossRef] [PubMed]
|
|
[132]
|
Abdelli, N., Pérez, J.F., Vilarrasa, E., Cabeza Luna, I., Melo-Duran, D., D’Angelo, M., et al. (2020) Targeted-Release Organic Acids and Essential Oils Improve Performance and Digestive Function in Broilers under a Necrotic Enteritis Challenge. Animals, 10, 259. [Google Scholar] [CrossRef] [PubMed]
|
|
[133]
|
Kim, D.K., Lillehoj, H.S., Lee, S.H., Jang, S.I. and Bravo, D. (2010) High-Throughput Gene Expression Analysis of Intestinal Intraepithelial Lymphocytes after Oral Feeding of Carvacrol, Cinnamaldehyde, or Capsicum Oleoresin. Poultry Science, 89, 68-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[134]
|
Du, E., Wang, W., Gan, L., Li, Z., Guo, S. and Guo, Y. (2016) Effects of Thymol and Carvacrol Supplementation on Intestinal Integrity and Immune Response of Broiler Chickens Challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology, 7, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[135]
|
Jerzsele, A., Szeker, K., Csizinszky, R., Gere, E., Jakab, C., Mallo, I.I., et al. (2012) Ef-ficacy of Protected Sodium Butyrate, a Protected Blend of Essential Oils, Their Combination, and Bacillus amyloliquefaciens Spore Suspension against Artificially Induced Necrotic Enteritis in Broilers. Poultry Science, 91, 837-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[136]
|
Lee, S.H., Lillehoj, H.S., Jang, S.I., Lillehoj, E.P., Min, W. and Bravo, D.M. (2013) Dietary Supplementation of Young Broiler Chickens with Capsicum and Turmeric Oleoresins Increase Resistance to Necrotic Enteritis. British Journal of Nutrition, 110, 840-847. [Google Scholar] [CrossRef]
|
|
[137]
|
Liu, Y., Yang, X., Xin, H., Chen, S., Yang, C. and Duan, Y. (2017) Effects of a Protected Inclusion of Organic Acids and Essential Oils as Antibiotic Growth Promoter Alternative on Growth Performance, Intestinal Morphology and Gut Microflora in Broilers. Animal Science Journal, 88, 1414-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[138]
|
Sorour, H.K., Hosny, R.A. and Elmasry, D.M.A. (2021) Effect of Peppermint Oil and Its Microemulsion on Necrotic Enteritis in Broiler Chickens. Veterinary World, 14, 483-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[139]
|
Ibrahim, D., Ismail, T.A., Khalifa, E., El-Kader, S.A.A., Mohamed, D.I., Mohamed, D.T., et al. (2021) Supplementing Garlic Nanohydrogel Optimized Growth, Gastrointestinal Integrity and Economics and Ameliorated Necrotic Enteritis in Broiler Chickens Using a Clostridium perfringens Challenge Model. Animals, 11, 2027. [Google Scholar] [CrossRef] [PubMed]
|
|
[140]
|
Moharreri, M., Vakili, R., Oskoueian, E. and Rajabzadeh, G. (2021) Phytobiotic Role of Essential Oil-Loaded Microcapsules in Improving the Health Parameters in Clostridium perfringens-Infected Broiler Chickens. Italian Journal of Animal Science, 20, 2075-2085. [Google Scholar] [CrossRef]
|
|
[141]
|
Jin, X., Huang, G., Luo, Z., Hu, Y. and Liu, D. (2022) Oregano (Origanum vulgare L.) Essential Oil Feed Supplement Protected Broilers Chickens against Clostridium perfringens Induced Necrotic Enteritis. Agriculture, 12, 18. [Google Scholar] [CrossRef]
|
|
[142]
|
Yan, X., Liu, Y., Yan, F., Yang, C. and Yang, X. (2019) Effects of Encapsulated Organic Acids and Essential Oils on Intestinal Barrier, Microbial Count, and Bacterial Metabolites in Broiler Chickens. Poultry Science, 98, 2858-2865. [Google Scholar] [CrossRef] [PubMed]
|
|
[143]
|
Stefanello, C., Rosa, D.P., Dalmoro, Y.K., Segatto, A.L., Vieira, M.S., Moraes, M.L., et al. (2020) Protected Blend of Organic Acids and Essential Oils Improves Growth Performance, Nutrient Digestibility, and Intestinal Health of Broiler Chickens Undergoing an Intestinal Challenge. Frontiers in Veterinary Science, 6, 491. [Google Scholar] [CrossRef] [PubMed]
|
|
[144]
|
Tiihonen, K., Kettunen, H., Bento, M.H.L., Saarinen, M., Lahtinen, S., Ouwehand, A.C., et al. (2010) The Effect of Feeding Essential Oils on Broiler Performance and Gut Microbiota. British Poultry Science, 51, 381-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[145]
|
Brenes, A. and Roura, E. (2010) Essential Oils in Poultry Nutrition: Main Effects and Modes of Action. Animal Feed Science and Technology, 158, 1-14. [Google Scholar] [CrossRef]
|
|
[146]
|
Kuttappan, V., Berghman, L., Vicuña, E., Latorre, J., Menconi, A., Wolchok, J., et al. (2015) Poultry Enteric Inflammation Model with Dextran Sodium Sulfate Mediated Chemical Induction and Feed Restriction in Broilers. Poultry Science, 94, 1220-1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[147]
|
Vicuña, E., Kuttappan, V., Galarza-Seeber, R., Latorre, J., Faulkner, O., Hargis, B., et al. (2015) Effect of Dexamethasone in Feed on Intestinal Permeability, Differential White Blood Cell Counts, and Immune Organs in Broiler Chicks. Poultry Science, 94, 2075-2080. [Google Scholar] [CrossRef] [PubMed]
|
|
[148]
|
Menconi, A., Hernandez-Velasco, X., Vicuña, E., Kuttappan, V., Faulkner, O., Tellez, G., et al. (2015) Histopathological and Morphometric Changes Induced by a Dextran Sodium Sulfate (DSS) Model in Broilers. Poultry Science, 94, 906-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[149]
|
Latorre, J.D., Adhikari, B., Park, S.H., Teague, K.D., Graham, L.E., Mahaffey, B.D., et al. (2018) Evaluation of the Epithelial Barrier Function and Ileal Microbiome in an Established Necrotic Enteritis Challenge Model in Broiler Chickens. Frontiers in Veterinary Science, 5, 199. [Google Scholar] [CrossRef] [PubMed]
|
|
[150]
|
Baxter, M.F., Merino-Guzman, R., Latorre, J.D., Mahaffey, B.D., Yang, Y., Teague, K.D., et al. (2017) Optimizing Fluorescein Isothiocyanate Dextran Measurement as a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens. Frontiers in Veterinary Science, 4, 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[151]
|
Vuong, C.N., Mullenix, G.J., Kidd, M.T., Bottje, W.G., Hargis, B.M. and Tellez-Isaias G. (2021) Research Note: Modified Serum Fluorescein Isothiocyanate Dextran (FITC-D) Assay Procedure to Determine Intestinal Permeability in Poultry Fed Diets High in Natural or Synthetic Pigments. Poultry Science, 100, Article ID: 101138. [Google Scholar] [CrossRef] [PubMed]
|
|
[152]
|
Baxter, M.F., Latorre, J.D., Dridi, S., Merino-Guzman, R., Hernandez-Velasco, X., Hargis, B.M., et al. (2019) Identification of Serum Biomarkers for Intestinal Integrity in a Broiler Chicken Malabsorption Model. Frontiers in Veterinary Science, 6, 144. [Google Scholar] [CrossRef] [PubMed]
|
|
[153]
|
Tellez Jr, G., Arreguin-Nava, M., Maguey, J., Michel, M., Latorre, J., Merino-Guzman, R., et al. (2020) Effect of Bacillus-Direct-Fed Microbial on Leaky Gut, Serum Peptide YY Concentration, Bone Mineralization, and Ammonia Excretion in Neonatal Female Turkey Poults Fed with a Rye-Based Diet. Poultry Science, 99, 4514-4520. [Google Scholar] [CrossRef] [PubMed]
|
|
[154]
|
Kerr, M.A. (2000) Function of Immunoglobulin A in Immunity. Gut, 47, 751-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[155]
|
Hermans, D., Pasmans, F., Heyndrickx, M., Van Immerseel, F., Martel, A., Van Deun, K., et al. (2012) A Tolerogenic Mucosal Immune Response Leads to Persistent Campylobacter jejuni Colonization in the Chicken Gut. Critical Reviews in Microbiology, 38, 17-29. [Google Scholar] [CrossRef]
|
|
[156]
|
Lin, F.C. and Young, H.A. (2013) The Talented Interferon-Gamma. Advances in Bioscience and Biotechnology, 4, 6-13. [Google Scholar] [CrossRef]
|
|
[157]
|
Betteridge, D.J. (2000) What Is Oxidative Stress? Metabolism, 49, 3-8. [Google Scholar] [CrossRef]
|
|
[158]
|
Surai, P.F. (2016) Antioxidant Systems in Poultry Biology: Superoxide Dismutase. Journal of Animal Research and Nutrition, 1, 8. [Google Scholar] [CrossRef]
|
|
[159]
|
Chen, J., Tellez, G., Richards, J.D. and Escobar, J. (2015) Identification of Potential Biomarkers for Gut Barrier Failure in Broiler Chickens. Frontiers in Veterinary Science, 2, 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[160]
|
Matter, K. and Balda, M.S. (2007) Epithelial Tight Junctions, Gene Expression and Nucleojunctional Interplay. Journal of Cell Science, 120, 1505-1511. [Google Scholar] [CrossRef] [PubMed]
|
|
[161]
|
Tsiouris, V. (2016) Poultry Management: A Useful Tool for the Control of Necrotic Enteritis in Poultry. Avian Pathology, 45, 323-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[162]
|
Mot, D., Timbermont, L., Haesebrouck, F., Ducatelle, R. and Van Immerseel, F. (2014) Progress and Problems in Vaccination against Necrotic Enteritis in Broiler Chickens. Avian Pathology, 43, 290-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[163]
|
Van Waeyenberghe, L., De Gussem, M., Verbeke, J., Dewaele, I. and De Gussem, J. (2016) Timing of Predisposing Factors Is Important in Necrotic Enteritis Models. Avian Pathology, 45, 370-375. [Google Scholar] [CrossRef] [PubMed]
|