[1]
|
Kempf, E.J. (1906) European Medicine: A Résumé of Medical Progress during the Eighteenth and Nineteenth Centuries. Journal of the Medical Library Association, 3, 231-248.
|
[2]
|
Mattei, C.C. (1880) Principles of Electrohomoeopathy. A New Science Discovered by Count Cesar Mattei of Bologna. Printing and Stereotype Offices V.-E. Gauthier and Co., Nice.
|
[3]
|
Baylen, J.O. (1969) The Mattei Cancer Cure: A Victorian Nostrum. Proceedings of the American Philosophical Society, 113, 149-176.
|
[4]
|
Memorial Sloan-Kettering Cancer Center (2012, May 29) BioResonance Therapy.
|
[5]
|
Suresh, S.K. (2018) The Greatest Enemy of Knowledge Is Not Ignorance, It Is the Illusion of Knowledge. https://medium.com/@somesh.ks/the-greatest-enemy-of-knowledge-is-not-ignorance-it-is-the-illusion-of-knowledge-5c0dd1dcca7e
|
[6]
|
Hornberger, J. (2019) Who Is the Fake One Now? Questions of Quackery, Worldiness and Legitimacy. Critical Public Health, 29, 484-493. https://doi.org/10.1080/09581596.2019.1602719
|
[7]
|
Sethares, W.A. (2005) Tuning, Timbre, Spectrum, Scale. Springer, Berlin.
|
[8]
|
Sikic, Z. (2016) Generalized Pythagorean Comma. CroArtScia2011, Zagreb, 4-7 May 2011, 169-174.
|
[9]
|
Livio, M. (2003) The Golden Ratio: The story of Phi, the World’s Most Astonishing Number. Broadway Books, New York City, 145 p.
|
[10]
|
Cui, H.Y. (2002) To String Together Six Theorems of Physics by Pythagoras Theorem.
|
[11]
|
Darvas, G., Koblyakov, A.A., Petoukhov, S.V. and Stepanian, I.V. (2012) Symmetries in Molecular-Genetic Systems and Musical Harmony. Symmetry: Culture and Science, 23, 343-375.
|
[12]
|
Garrett, S.L. (2020) String Theory. In: Understanding Acoustics, Springer, Berlin, 133-178. https://doi.org/10.1007/978-3-030-44787-8_3
|
[13]
|
Schuch, D. (2010) Pythagorean Quantization, Action(s) and the Arrow of Time. Journal of Physics: Conference Series, 237, Article ID: 012020. https://doi.org/10.1088/1742-6596/237/1/012020
|
[14]
|
Overduin, J. and Henry, R.C. (2005) Physics and the Pythagorean Theorem.
|
[15]
|
Richinick, J. (2008) The Upside-Down Pythagorean Theorem. The Mathematical Gazette, 92, 313-316. https://doi.org/10.1017/S0025557200183275
|
[16]
|
Kappraff, J. and Adamson, G.W. (2009) Generalized Genomic Matrices. Silver Means, and Pythagorean Triples, Forma, 24, 41-48.
|
[17]
|
Overmarch, A., Ntogramatzidis, L. and Venkatraman, S. (2019) A New Approach to Generate All Pythagorean Triples. AIMS Mathematics, 4, 242-253. https://doi.org/10.3934/math.2019.2.242
|
[18]
|
Maxwell, J.C. (1998) A Treatise on Electricity and Magnetism. Clarendon Press, Oxford.
|
[19]
|
Benett, W.R. (1994) Cancer and Power Lines. Physics Today, 47, 23-29. https://doi.org/10.1063/1.881417
|
[20]
|
Portier, C.J. and Wolfe, M.S. (1998) Assessment of Health Effects from Exposure to Power-Line Frequency Electric and Magnetic Fields. NIH Publication 98-3981. National Institute of Environmental Health Sciences, Research Triangle Park.
|
[21]
|
Harland, J.D. and Liburdy, R.P. (1997) Environmental Magnetic Fields Inhibit the Antiproliferation Action of Tamoxifen and Melatonin in a Human Breast Cancer Cell Line. Bioelectromagnetics, 18, 555-562. https://doi.org/10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1
|
[22]
|
Ahlbom, A., Day, N., Feychting, M., Roman, E., Skinner, J., et al. (2000) A Pooled Analysis of Magnetic Fields and Childhood Leukemia. British Journal of Cancer, 83, 692-698. https://doi.org/10.1054/bjoc.2000.1376
|
[23]
|
Greenland, S., Sheppard, A.R., Kaune, W.T., et al. (2000) A Pooled Analysis of Magnetic Fields, Wire Codes, and Childhood Leukemia. Epidemiology, 11, 624-634. https://doi.org/10.1097/00001648-200011000-00003
|
[24]
|
Takebe, H., Shiga, T., Kato, M. and Masada. E. (2001) Biological and Health Effects from Exposure to Power-Line Frequency Electromagnetic Fields. IOS Press, Amsterdam.
|
[25]
|
Randerson, J. (2007, January 18) Electrosmog in the Clear with Scientists. The Guardian. http://www.guardian.co.uk/technology/2007/jan/18/guardianweeklytechnologysection4
|
[26]
|
Oschman, J. (2000). Energy Medicine—The Scientific Basis. Churchill Livingstone, Edinburgh.
|
[27]
|
Loja, T., Stehlikova, O., Palko, L., Vrba, K., Rampl, I. and Klabusay, M. (2014) Influence of Pulsed Electromagnetic and Pulsed Vector Magnetic Potential Field on the Growth of Tumor Cells. Electromagnetic Biology and Medicine, 33, 190-197. https://doi.org/10.3109/15368378.2013.800104
|
[28]
|
Rein, G. and Tiller, W.A. (1996) Anomalous Information Storage in Water: Spectroscopic Evidence for Non-Quantum Informational Transfer. Proceedings 3rd International Conference New Energy, Denver, 24-28 April 1996, 365.
|
[29]
|
Meyl, K. (2001) Scalar Waves: Theory and Experiments. Journal of Scientific Exploration, 15, 199-205.
|
[30]
|
Tiller, W.A. (1999) Subtle Energies. Science & Medicine, 6, 28 p.
|
[31]
|
Hall, H. (2005) A Review of Energy Medicine: The Scientific Basis. Skeptic Magazine, 11, 89-93. http://quackfiles.blogspot.com/2006/01/review-of-energy-medicine-scientific.html
|
[32]
|
Bruhn, G.W. (2000) Commentary on the Chapter “Scalar Waves”, in “Energy Medicine—The Scientific Basis”. http://www.mathematik.tu-darmstadt.de/~bruhn/Commentary-Oschman.htm
|
[33]
|
Bruhn, G.W. (2001) On the Existence of K. Meyl’s Scalar Waves. Journal of Scientific Exploration, 15, 206-210.
|
[34]
|
Saliev, T., Begimbetova, D., Masoud, A.R. and Matkarimov (2019) Biological Effects of Non-Ionizing Electromagnetic Fields—Two Sides of a Coin. Progress in Biophysics and Molecular Biology, 141, 25-36. https://doi.org/10.1016/j.pbiomolbio.2018.07.009
|
[35]
|
Carlson, W.B. (2013) Tesla: Inventor of the Electrical Age. Princeton University Press, Princeton. https://doi.org/10.1515/9781400846559
|
[36]
|
Tesla, N. (1891) Patent Title: Alternating Electric Current Generator. US447,921.
|
[37]
|
Tesla, N. (1914) Patent Title: Apparatus for Transmitting Electrical Energy. US1119732 A.
|
[38]
|
Tesla, N. (1905) Art of Transmitting Electrical Energy through the Natural Medium. United States Patent, No. 787,412.
|
[39]
|
Tesla, N. (1898) High Frequency Oscillators for ElectroTherapeutic and Other Purposes. The Electrical Engineer, 26, 346-348.
|
[40]
|
Aharonov, Y. and Bohm, D. (1959) Significance of Electromagnetic Potentials in Quantum Theory. Physical Review, 115, 485-491. https://doi.org/10.1103/PhysRev.115.485
|
[41]
|
Szasz, A., Vincze, Gy. andocs, G. and Szasz, O. (2009) Do Field-Free Electromagnetic Potentials Play a Role in Biology? Electromagnetic Biology and Medicine, 28, 135-147. https://doi.org/10.1080/15368370802711938
|
[42]
|
Hegyi, G., Vincze, Gy. and Szasz, A. (2007) Axial Vector Interaction with Bio-Systems. Electromagnetic Biology and Medicine, 26, 107-118. https://doi.org/10.1080/15368370701380835
|
[43]
|
Andocs, G., Vincze, Gy., Szasz, O., Szendro, P. and Szasz, A. (2009) Effect of Curl-Free Potentials on Water. Electromagnetic Biology and Medicine, 28, 166-181. https://doi.org/10.1080/15368370902724724
|
[44]
|
A Brief History of Dr. Royal Raymond Rife. https://www.nationallibertyalliance.org/files/NaturalHealing/Rife/History%20of%20Dr%20Rife.pdf
|
[45]
|
Bird, C. (1976) What Has Become of the Rife Microscope? New Age Journal, March 1976, 41-47.
|
[46]
|
Seldel, R.E. and Winter, M.E. (1944) The New Microscopes. Journal of the Franklin Institute, 237, 103-130.
|
[47]
|
Kendall, A.I. and Rife, R.R. (1931) Observations on Bacillus Typhosus in Its Filterable State: A Preliminary Communication. California and Western Medicine, 35, 409-411.
|
[48]
|
Stylianidou, S., Connor, B., Nissen, S.B., Kuwada, N.J. and Wiggins, P.A. (2016) SuperSegger: Robust Image Segmentation, Analysis and Lineage Tracking of Bacterial Cells. Molecular Microbiology, 102, 690-700. https://doi.org/10.1111/mmi.13486
|
[49]
|
Merouan, A., Rey, Villamizar, N., Lu, Y.B., Liadi, I., Romain, G., Lu, J., Singh, H., Cooper, L.J.N., Varadarajan, N. and Roysam, B. (2015) Automated Profiling of Individual Cell-Cell Interactions from High-Throughput Time-Lapse Imaging Microscopy in Nanowell Grids (TIMING). Bioinformatics, 31, 3189-3197. https://doi.org/10.1093/bioinformatics/btv355
|
[50]
|
Young, J.W., Locke, J.C.W., Altinok, A., Rosenfeld, N., Bacarian, T., Swain, P.S., Mjolsness, E. and Elowitz, M.B. (2011) Measuring Single-Cell Gene Expression Dynamics in Bacteria Using Fluorescence Time-Lapse Microscopy. Nature Protocols, 7, 80-88. https://doi.org/10.1038/nprot.2011.432
|
[51]
|
Tesla, N. (1885) Electric Arc Lamp. US171,416.
|
[52]
|
Scoon, A. (2001) Special Supplement of Everyday Practical Electronics, April 2001. Wimbore Publishing Ltd., Dorset, and Maxfield & Montrose Interactive Inc., Madison. https://www.rife.de/files/epearticle.pdf
|
[53]
|
Jones, N. (1938) Dread Disease Germs Destroyed by Rays, Claim of S.D. Scientist: Cancer Blow Seen after 18-Year Toil by Rife. The San Diego Union-Tribune, 1.
|
[54]
|
Line, B. (2017) Rife’s Great Discovery: Why “Resonant Frequency” Therapy Is Kept Hidden from Public Awareness. BioMed Publishing Group, South Lake Tahoe.
|
[55]
|
Lynes, B. (1997) The Cancer Cure That Worked: 50 Years of Suppression. Marcus Publishing, Canada.
|
[56]
|
Allegretti, M. (2018) The Frequencies of Rifing—From the First Frequencies Discovered by Royal Rife to Today: Guide to Selection and Use of Spooky2 Frequencies.
|
[57]
|
Silver, N. (2001) The Handbook of Rife Frequency Healing: Holistic Technology for Cancer and Other Diseases. The Center for Frequency Education Publishing, Stone Ridge.
|
[58]
|
Energy Medicine—Radionics Rife Machine. http://www.skepdic.com/radionics.html
|
[59]
|
(1994) Questionable Methods of Cancer Management: Electronic Devices. CA: A Cancer Journal for Clinicians, 44, 115-127. https://doi.org/10.3322/canjclin.44.2.115
|
[60]
|
Barrett, S. (2010) Device Watch—Rife Device Marketer Sentenced to Prison. https://quackwatch.org/device/reports/rife/folsom
|
[61]
|
Barrett, S. (2012) Rife Machine Operator Sued. Quackwatch. https://www.quackwatch.org/04ConsumerEducation/News/rife.html
|
[62]
|
Farley, D.F. (1996) Unproven Medical Clamims Land Men in Prison, Investigators’ Reports. FDA Consumer. U.S. Food and Drug Administration. https://web.archive.org/web/20071214170405/https://www.fda.gov/fdac/departs/796_irs.html
|
[63]
|
Kurtzweil, P. (1996) Investigators’ Reports. FDA Consumer. U.S. Food and Drug Administration. https://web.archive.org/web/20071214170405/https://www.fda.gov/fdac/departs/796_irs.html
|
[64]
|
Willmsen, C. and Berens, M.J. (2007) Pair Indicted on Fraud Charges in Medical-Device Probe. The Seattle Times. https://www.seattletimes.com/seattle-news/pair-indicted-on-fraud-charges-in-medical-device-probe
|
[65]
|
Barrett, S. (2009) Rife Device Marketers Convicted. Quackwatch.
|
[66]
|
Johnson, J. (2019) Can the Rife Machine Treat Cancer? https://www.medicalnewstoday.com/articles/325628.php
|
[67]
|
Hill, B. (2000) Cheating Death. The Sydney Morning Herald. http://www.healthwatcher.net/Quackerywatch/Cancer/Cancer-news/smh001230rife-aus.html
|
[68]
|
No Authors Listed (1994) Questionable Methods of Cancer Management: Electronic Devices. CA: A Cancer Journal for Clinicians, 44, 115-127. https://doi.org/10.3322/canjclin.44.2.115
|
[69]
|
(2013) Rife Machines and Cancer. Cancer Research UK.
|
[70]
|
Lakhovsky, G. (1925) Curing Cancer with Ultra Radio Frequencies. Radio News, February, 1282-1283.
|
[71]
|
Lakhovsky, G. (1988) Secret of Life: Electricity Radiation & Your Body. 4th Revised Edition, Noontide Press, Newport Beach.
|
[72]
|
Rife, R.R. (1953) History of the Development of a Successful Treatment for Cancer and Other Virus, Bacteria and Fungi. Rife Virus Microscope Institute, San Diego.
|
[73]
|
Bearden, T.E. (1995) Vacuum Engines and Priore’s Methodology: The True Science of Energy Medicine. Explore, 6, 66-76.
|
[74]
|
Bateman, J.B. (1978) A Biologically Active Combination of Modulated Magnetic and Microwave Fields: The Prioré Machine. Office of Naval Research, London, Report R-5-78.
|
[75]
|
Camp, J. (1973) Magic, Myth and Medicine. Priory Press Ltd., Dunstable.
|
[76]
|
Gurwitsch, A.G. (1944) A Biological Field Theory. Nauka, Moscow. (In Russian)
|
[77]
|
Beloussov, L.V., Opitz, J.M. and Gilbert, S.F. (1997) Life of Alexander G. Gurwitsch and His Relevant Contribution to the Theory of Morphogenetic Fields. The International Journal of Developmental Biology, 41, 771-777.
|
[78]
|
Spemann, H. (1938) Embryonic Development and Induction. Yale University Press, New Haven.
|
[79]
|
Manning, C.A. and Vanrenen, L. (1989) Bioenergetic Medicines East and West. North Atlantic Books, Berkeley.
|
[80]
|
Levin, M. (2012) Morphogenetic Fields in Embryogenesis, Regeneration, and Cancer: Non-Local Control of Complex Patterning. Biosystems, 109, 243-261. https://doi.org/10.1016/j.biosystems.2012.04.005
|
[81]
|
Levin, M. (2003) Bioelectromagnetics in Morphogenesis (Review). Bioelectromagnetics, 24, 295-315. https://doi.org/10.1002/bem.10104
|
[82]
|
Volodiaev, I. and Belousssov, L.V. (2015) Revisiting the Mitogenetic Effect of Ultra-Weak Photon Emission. Frontiers in Physiology, 6, Article No. 241. https://doi.org/10.3389/fphys.2015.00241
|
[83]
|
Thompson, W.G. (2005) The Placebo Effect and Health, Combining Science and Compassionate Care. Prometheus Books, New York.
|
[84]
|
Gauler, T.C. and Weihrauch, T.R. (1997) Placebo. Urban & Schwarzenberg, Munich.
|
[85]
|
Hróbjartsson, A. and Gøtzsche, P.C. (2010) Placebo Interventions for All Clinical Conditions. The Cochrane Database of Systematic Reviews, 106, CD003974. https://doi.org/10.1002/14651858.CD003974.pub3
|
[86]
|
Lin, J.C. (1989) Electromagnetic Interaction with Biological Systems. Pergamon Press, New York, London. https://doi.org/10.1007/978-1-4684-8059-7
|
[87]
|
Bersani, F. (1999) Electricity and Magnetism in Biology and Medicine. Kluwer Academic Plenum Publishers, New York, Boston. https://doi.org/10.1007/978-1-4615-4867-6
|
[88]
|
Marko, M. (2005) “Biological Windows”: A Tribute to WR Adey. The Environmentalist, 25, 67-74. https://doi.org/10.1007/s10669-005-4268-8
|
[89]
|
Adey, W.R. (1984) Nonlinear, Nonequilibrium Aspects of Electromagnetic Field interactions at Cell Membranes. In: Adey, W.R. and Lawrence, A.F., Eds., Nonlinear Electrodynamics in Biological Systems, Plenum Press, New York, London, 3-22. https://doi.org/10.1007/978-1-4613-2789-9_1
|
[90]
|
Adey, W.R. (1990) Joint Actions of Environmental Nonionizing Electromagnetic Fields and Chemical Pollution in Cancer Promotion. Environmental Health Perspectives, 86, 297-305. https://doi.org/10.1289/ehp.9086297
|
[91]
|
Blackman, C.F., Kinney, L.S., House, D.E., et al. (1989) Multiple Power-Density Windows and Their Possible Origin. Bioelectromagnetics, 10, 115-128. https://doi.org/10.1002/bem.2250100202
|
[92]
|
Liu, D.S., Astumian, R.D. and Tsong, T.Y. (1990) Activation of Na+ and K+ Pumping Modes of (Na,K)-ATPase by an Oscillating Electric Field. The Journal of Biological Chemistry, 265, 7260-7267. https://doi.org/10.1016/S0021-9258(19)39108-2
|
[93]
|
Markin, V.S. and Tsong, T.Y. (1991) Frequency and Concentration Windows for the Electric Activation of a Membrane Active Transport System. Biophysics Journal, 59, 1308-1316. https://doi.org/10.1016/S0006-3495(91)82345-1
|
[94]
|
Hameroff, S. and Penrose, R. (2014) Consciousness in the Universe: A Review of the “Orch OR” Theory. Physics of Life Reviews, 11, 39-78. https://doi.org/10.1016/j.plrev.2013.08.002
|
[95]
|
Del Giudice, E. (2011) The Interplay of Biomolecules and Water at the Origin of the Active Behavior of Living Organisms. Journal of Physics: Conference Series, 329, Article ID: 012001. https://doi.org/10.1088/1742-6596/329/1/012001
|
[96]
|
Geesink, H.J. and Meijer, D.K.F. (2020) An Integral Predictive Model That Reveals a Causal Relation between Exposures to Non-Thermal Electromagnetic Waves and Healthy or Unhealthy Effects. https://www.researchgate.net/publication/340488204
|
[97]
|
Bowling, D.L. and Purves, D. (2015) A Biological Rationale for Musical Consonance. PNAS, 112, 11155-11160. https://doi.org/10.1073/pnas.1505768112
|
[98]
|
Geesink, J.H. and Meijer, D.K.F. (2018) A Semi-Harmonic Electromagnetic Frequency Pattern Organizes Non-Local States and Quantum Entanglement in both EPR Studies and Life Systems. Journal of Modern Physics, 9, 898-924. https://doi.org/10.4236/jmp.2018.95056
|
[99]
|
Geesink, H.J.H. and Meijer, D.K.F. (2016) Quantum Wave Information of Life Revealed: An Algorithm for Electromagnetic Frequencies That Create Stability of Biological Order, with Implications for Brain Function and Consciousness. NeuroQuantology, 14, 106-125. https://doi.org/10.14704/nq.2016.14.1.911
|
[100]
|
Meijer, D.K.F., Jerman, I., Melkikh, A.V. and Sbitnev, V.I. (2019) Consciousness in the Universe Is Tuned by a Musical Master Code: A Hydrodynamic Superfluid Quantum Space Guides a Conformal Mental Attribute of Reality. The Hard Problem in Consciousness Studies Revisited. Project: The Information Universe. On the Missing Link in Concepts on the Architecture of Reality.
|
[101]
|
Geesink, H.J.H. and Meijer, D.K.F. (2018) Mathematical Structure for Electromagnetic Frequencies That May Reflect Pilot Waves of Bohm’s Implicate Order. Journal of Modern Physics, 9, 851-897. https://doi.org/10.4236/jmp.2018.95055
|
[102]
|
Geesink, H.J. (2020) Proposed Informational Code of Biomolecules and Its Building Blocks-Quantum Coherence versus Decoherence. Project: Quantum Coherence in Animate and Non-Animate Systems.
|
[103]
|
Geesink, H.J.H., Jerman, I. and Meijer, D.K.F. (2019) Water: The Cradle of Life in Action, Cellular Architecture Is Guided by Coherent Quantum Frequencies as Revealed in Pure Water. Projects: Existence, Nature and Significance of Biological Field (the Biofield) Quantum Coherence in Animate and Non-Animate Systems.
|
[104]
|
Geesink, H., Meijer, D. and Jerman, I. (2020) Clay Minerals-Information Network Linking Quantum Coherence and First Life. Projects: The Origin of Organisms (Life, Living Process) Based on Long Range Long Term Dynamic Interfacial Water Structures Quantum Coherence in Animate and Non-Animate Systems.
|
[105]
|
Brueck, R.L. and Meijer, D.K.F. (2020) A New Premise for Quantum Physics, Consciousness and the Fabric of Reality. Project: The Information Universe. On the Missing Link in Concepts on the Architecture of Reality.
|
[106]
|
Meijer, D.K.F. (2019) The Anticipation of Afterlife as Based on Current Physics of Information. Project: The Information Universe. On the Missing Link in Concepts on the Architecture of Reality.
|
[107]
|
Milo, R. and Phillips, R. (2016) Cell Biology by the Numbers. Garland Science, New York. https://doi.org/10.1201/9780429258770
|
[108]
|
Donald, T.H. (2001) Biological Thermodynamics. Cambridge University Press, Cambridge, 37.
|
[109]
|
Garrett, G. (1995) Biochemistry. Saunders College Publishing, Philadelphia, 16.
|
[110]
|
Lodish, et al. (2000) Molecular Cell Biology. 4th Edition, W. H. Freeman, New York.
|
[111]
|
Geesink, H.J.H. and Meijer, D.K.F. (2020) Electromagnetic Frequency Patterns That Are Crucial for Health and Disease Reveal a Generalized Biophysical Principle: The GM Scale. Quantum Biosystems, 8, 1-16.
|
[112]
|
Guo, W. and Feng, Q. (2019) Free Vibration Analysis of Arbitrary-Shaped Plates Based on the Improved Rayleigh-Ritz Method. Advances in Civil Engineering, 2019, Article ID: 7041592. https://doi.org/10.1155/2019/7041592
|
[113]
|
Senjanivic, I., Tomic, M., Vladimir, N. and Cho, D.S. (2013) Analytical Solutions for Free Vibrations of a Moderately Thick Rectangular Plate. Mathematical Problems in Engineering, 2013, Article ID: 207460. https://doi.org/10.1155/2013/207460
|
[114]
|
Geesink, H.J.H. and Meijer, D.K.F. (2017) Nature Unites First, Second and Third Harmonics to Organize Coherent Electromagnetic Frequency Patterns That Are Crucial for Health and Disease. https://www.researchgate.net/publication/317003066
|
[115]
|
Sonderkamp, T., Geesink, H.J.H. and Meijer, D.K.F. (2019) Statistical Analysis and Prospective Application of the GM-Scale, a Semi-Harmonic EMF Scale Proposed to Discriminate between “Coherent” and “Decoherent” EM Frequencies on Life Conditions. Quantum Biosystems, 12, 33-51.
|
[116]
|
Costa, M., Goldberger, A.L. and Peng, C.K. (2002) Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89, 1-5. https://doi.org/10.1103/PhysRevLett.89.068102
|
[117]
|
Meijer, D.K.F. and Geesink, H.J.H. (2018) Favourable und Unfavourable EMF Frequency Patterns in Cancer: Perspectives for Improved Therapy and Prevention. Journal of Cancer Therapy, 9, 188-230. https://doi.org/10.4236/jct.2018.93019
|
[118]
|
Pauri, M. (2003) Don’t Ask Pythagoras about the Quantum. Science & Education, 12, 467-477. https://doi.org/10.1023/A:1025330129744
|
[119]
|
Geesink, J.H. and Meijer, D.K.F. (2017) Bio-Soliton Model That Predicts Non-Thermal Electromagnetic Frequency Bands, That either Stabilize or Destabilize Living Cells. Electromagnetic Biology and Medicine, 36, 357-378. https://doi.org/10.1080/15368378.2017.1389752
|
[120]
|
Geesink, H.J.H. and Meijer, D.K.F. (2017) Cancer Is Promoted by Cellular States of Electromagnetic Decoherence and can Be Corrected by Exposure to Coherent Non-Ionizing Electromagnetic Fields, a Physical Model about Cell-Sustaining and Cell-Decaying Soliton Eigen-Frequencies. https://www.researchgate.net/publication/316058728_Cancer_is_promoted_by_cellular_states_of_electromagnetic_decoherenceandcanbecorrectedbyexposuretocoherentnon-ionizingelectromagneticfields
|
[121]
|
Tsujita, K., Satow, R., Asada, S., Nakamura, Y., Arnes, L., Sako, K., Fujita, Y., Fukami, K. and Itoh, T. (2021) Homeostatic Membrane Tension Constrains Cancer Cell Dissemination by Counteracting BAR Protein Assembly. Nature Communications, 12, Article No. 5930. https://doi.org/10.1038/s41467-021-26156-4
|
[122]
|
Csoboz, B., Balogh, G.E., Kusz, E., Gombos, I., Peter, M., Crul, T., Gungor, B., Haracska, L., Bogdanovics, G., Torok, Z., Horvath, I. and Vigh, L. (2013) Membrane Fluidity Matters: Hyperthermia from the Aspects of Lipids and Membranes. International Journal of Hyperthermia, 29, 491-499. https://doi.org/10.3109/02656736.2013.808765
|
[123]
|
Galeotti, T., Borrello, S., Minotti, G. and Masotti, L. (1986) Membrane Alterations in Cancer Cells: The Role of Oxy Radicals. Annals of the New York Academy of Sciences, 488, 468-480. https://doi.org/10.1111/j.1749-6632.1986.tb46579.x
|
[124]
|
Yang, M. and Brackenbury, W.J. (2013) Membrane Potential and Cancer Progression. Frontiers in Physiology, 4, Article No. 185. https://doi.org/10.3389/fphys.2013.00185
|
[125]
|
Kadir, L.A., Stacey, M. and Barrett, J.R. (2018) Emerging Roles of the Membrane Potential: Action beyond the Action Potential. Frontiers in Physiology, 9, Article No. 1661. https://doi.org/10.3389/fphys.2018.01661
|
[126]
|
Szentgyorgyi, A. (1968) Bioelectronics, a Study on Cellular Regulations, Defence and Cancer. Academic Press, New York, London.
|
[127]
|
Szentgyorgyi, A. (1998) Electronic Biology and Cancer. Marcel Dekker, New York.
|
[128]
|
Maroti, P., Berkes, L. and Tolgyesi, F. (1998) Biophysics Problems. AkademiaiKiado, Budapest.
|
[129]
|
Shashini, B., Ariyasu, S., Takeda, R., Suzuki, T., Shiina, S., Akimoto, K., et al. (2018) Size-Based Differentiation of Cancer and Normal Cells by a Particle Size Analyzer Assisted by a Cell-Recognition PC Software. Biological and Pharmaceutical Bulletin, 41, 478-503. https://doi.org/10.1248/bpb.b17-00776
|
[130]
|
Baba, A.I. and Catoi, C. (2007) Chapter 3. Tumor Cell Morphology. In: Buchares, R.O., Ed., Comparative Oncology, The Publishing House of the Romanian Academy, Bucharest. https://www.ncbi.nlm.nih.gov/books/NBK9553/
|
[131]
|
Lyons, S.M., Alizadeh, E., Mannheimer, J., Schuamberg, K., Castle, J., Schroder, B., et al. (2016) Changes in Cell Shape Are Correlated with Metastatic Potential in Murine and Human Osteosarcomas. Biology Open, 5, 289-299. https://doi.org/10.1242/bio.013409
|
[132]
|
Pache, B. (2018) How Tumor-Specific Modulation Frequencies Were Discovered. The Cancer Letter, 44, 24-29.
|
[133]
|
Barbault, A., Costa, F.P., Bottger, B., Munden, R.F., Bomholt, F., Kuster, N. and Pasche, B. (2009) Amplitude-Modulated Electromagnetic Fields for the Treatment of Cancer: Discovery of Tumor-Specific Frequencies and Assessment of a Novel Therapeutic Approach. Journal of Experimental and Clinical Cancer Research, 28, 51. https://doi.org/10.1186/1756-9966-28-51
|
[134]
|
Jaminez, H., Blackman, C., Lesser, G., Debinski, W., Chan, M., Sharma, S., et al. (2018) Use of Non-Ionizing Electromagnetic Fields for the Treatment of Cancer. Frontiers in Bioscience, Landmark, 23, 284-297. https://doi.org/10.2741/4591
|
[135]
|
Zimmerman, J.W., Jimenez, H., Pennison, M.J., Brezovich, I., Morgan, D., Mudry, A., et al. (2013) Targeted Treatment of Cancer with Radiofrequency Electromagnetic Fields Amplitude-Modulated at Tumor-Specific Frequencies. Chinese Journal of Cancer, 32, 573-581. https://doi.org/10.5732/cjc.013.10177
|
[136]
|
Bose, D., Zimmerman, L.J., Pierobonn, M., Petricoin, E., Tozzi, F., Parikh, A., et al. (2011) Chemoresistant Colorectal Cancer Cells and Cancer Stem Cells Mediate Growth and Survival of Bystander Cells. British Journal of Cancer, 105, 1759-1767. https://doi.org/10.1038/bjc.2011.449
|
[137]
|
Sharma, S., Wu, S.Y., Jimenez, H., Xing, F., Zhu, D., Liu, Y., et al. (2019) Ca2+ and CACNA1H Mediate Targeted Suppression of Breast Cancer Brain Metastasis by A? RF EMF. EBioMedicine, 44, 194-208. https://doi.org/10.1016/j.ebiom.2019.05.038
|
[138]
|
Zimmerman, J.W., Pennison, M.J., Brezovich, I., Yi, N., Yang, C.T., Ramaker, R., et al. (2012) Cancer Cell Proliferation Is Inhibited by Specific Modulation Frequencies. British Journal of Cancer, 106, 307-313. https://doi.org/10.1038/bjc.2011.523
|
[139]
|
Blackman, C.K. (2012) Treating Cancer with Amplitude-Modulated Electromagnetic Fields: A Potential Paradigm Shift, Again? British Journal of Cancer, 106, 241-242. https://doi.org/10.1038/bjc.2011.576
|
[140]
|
Pasche, B. and Barbault, A. (2010) Electromagnetic System for Influencing Cellular Functions in a Warm-Blooded Mammalian Subject. Patent Nr. EP 2139557 B1. https://patents.google.com/patent/EP2139557B1/en
|
[141]
|
Costa, F.P., de Oliveira, A.C., Meirelles, R., Machado, M.C.C., Zanesco, T., Surjan, R., et al. (2011) Treatment of Advanced Hepatocellular Carcinoma with Very Low Levels of Amplitude-Modulated Electromagnetic Fields. British Journal of Cancer, 105, 640-648. https://doi.org/10.1038/bjc.2011.292
|
[142]
|
Zimmermann, J.W., Pennison, M.J., Brezovich, I., Yi, N., Yang, C.T., Ramaker, R., et al. (2011) Cancer Cell Proliferation Is Inhibited by Specific Modulation Frequencies. British Journal of Cancer, 1-7.
|
[143]
|
Jimenez, H., Wang, M., Zimmerman, J.W., Pennison, M.J., Sharma, S., Surratt, T., et al. (2019) Tumour-Specific Amplitude-Modulated Radiofrequency Electromagnetic Fields Induce Differentiation of Hepatocellular Carcinoma via Targeting Cav3.2 T-Type Voltage-Gated Calcium Channels and Ca2+ Influx. EBioMedicine, 44, 209-224. https://doi.org/10.1016/j.ebiom.2019.05.034
|
[144]
|
Hum, N.R., Sebastian, A., Gilmore, S.F., He, W., Martin, K.A., Hinckley, A., et al. (2020) Comparative Molecular Analysis of Cancer Behavior Cultured in Vitro. In Vivo, and Ex Vivo, Cancers, 12, 690. https://doi.org/10.3390/cancers12030690
|
[145]
|
Fares, J., Fares, M.Y., Khachfe, H.H., et al. (2020) Molecular Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduction and Targeted Therapy, 5, Article No. 28. https://doi.org/10.1038/s41392-020-0134-x
|
[146]
|
de Loof, M., de Jong, S. and Kruyt, F.A.E. (2019) Multiple Interactions between Cancer Cells and the Tumor Microenvironment Modulate TRAIL Signaling: Implications for TRAIL Receptor Targeted Therapy. Frontiers in Immunology, 10, Article No. 1530. https://doi.org/10.3389/fimmu.2019.01530
|
[147]
|
Pasche, B. and Barbault, A. (2007) A Study of Therapeutic Amplitude-Modulated Electromagnetic Fields in Advanced Tumors (THBC001). ClinicalTrials.gov, Identifier: NCT00440570.
|
[148]
|
Pasche, B. and Barbault, A. (2007) A Study of Electromagnetic Waves in the Treatment of the Advanced Hepatocarcinoma (THBC002). ClinicalTrials.gov, Identifier: NCT00440934.
|
[149]
|
Pasche, B. and Grant, S.C. (2014) Non-Small Cell Lung Cancer and Precision Medicine, a Model for the Incorporation of Genomic Features into Clinical Trial Design. JAMA, 311, 1975-1976. https://doi.org/10.1001/jama.2014.3742
|
[150]
|
Anteneodo, C. and da Luz, M.G.E. (2010) Complex Dynamics of Life at Different Scales: From Genomic to Global Environmental Issues. Philosophical Transactions of the Royal Society A, 368, 5561-5568. https://doi.org/10.1098/rsta.2010.0286
|
[151]
|
Deering, W. and West, B.J. (1992) Fractal Physiology. IEEE Engineering in Medicine and Biology, 11, 40-46. https://doi.org/10.1109/51.139035
|
[152]
|
West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore, London. https://doi.org/10.1142/1025
|
[153]
|
Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology. Oxford Univ. Press, New York, Oxford.
|
[154]
|
Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., et al. (2002) Fractal Dynamics in Physiology: Alterations with Disease and Aging. PNAS Colloquium, 99, 2466-2472. https://doi.org/10.1073/pnas.012579499
|
[155]
|
Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science, Heidelberg. https://doi.org/10.1007/978-90-481-9498-8
|
[156]
|
Eskov, V.M., Filatova, O.E., Eskov, V.V., et al. (2017) The Evolution of the Idea of Homeostasis: Determinism, Stochastics, and Chaos—Self-Organization. Biophysics, 62, 809-820. https://doi.org/10.1134/S0006350917050074
|
[157]
|
Billman, G.E. (2020) Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Frontiers in Physiology, 11, Article No. 200. https://doi.org/10.3389/fphys.2020.00200
|
[158]
|
Lovelady, D.C., Richmond, T.C., Maggi, A.N., et al. (2007) Distinguishing Cancerous from Noncancerous Cells through Analysis of Electrical Noise. Physical Review E, 76, Article ID: 041908. https://doi.org/10.1103/PhysRevE.76.041908
|
[159]
|
Potoyan, D.A. and Wolynes, P.G. (2014) On the Dephasing of Genetic Oscillators. PNAS, 111, 2391-2396. https://doi.org/10.1073/pnas.1323433111
|
[160]
|
Ptitsyn, A.A., Zvonic, S. and Gimble, J.M. (2007) Digital Signal Processing Reveals Circadian Baseline Oscillation in Majority of Mammalian Genes. PLOS Computational Biology, 3, e120. https://doi.org/10.1371/journal.pcbi.0030120
|
[161]
|
Wang, Y., Wang, X., Wohland, T. and Sampath, K. (2016) Extracellular Interactions and Ligand Degradation Shape the Nodal Morphogen Gradient. ELife, 5, e13879. https://doi.org/10.7554/eLife.13879
|
[162]
|
Cramer, F. (1995) Chaos and Order (The Complex Structure of Living Systems). VCH, Weinheim.
|
[163]
|
Peng, C.K., Buldyrev, S.V., Hausdorff, J.M., et al. (1994) Fractals in Biology and Medicine: From DNA to the Heartbeat. In: Bunde, A. and Havlin, S., Eds., Fractals in Science, Springer-Verlag, Berlin, 49-87. https://doi.org/10.1007/978-3-662-11777-4_3
|
[164]
|
Bak, P., Tang, C. and Wieserfeld, K. (1988) Self-Organized Criticality. Physical Review A, 38, 364-374. https://doi.org/10.1103/PhysRevA.38.364
|
[165]
|
Musha, T. and Sawada, Y. (1994) Physics of the Living State. IOS Press, Amsterdam.
|
[166]
|
Szendro, P., Vincze, G. and Szasz, A. (2001) Bio-Response on White-Noise Excitation. Electromagnetic Biology and Medicine, 20, 215-229. https://doi.org/10.1081/JBC-100104145
|
[167]
|
Szendro, P., Vincze, G. and Szasz, A. (2001) Pink-Noise Behaviour of Biosystems. European Biophysics Journal, 30, 227-231. https://doi.org/10.1007/s002490100143
|
[168]
|
Ho, M.W., Popp, F.A. and Warnke, U. (1994) Bioelectrodynamics and Biocommunication. World Scientific, Singapore. https://doi.org/10.1142/2267
|
[169]
|
Bernardi, P. and D’Inzeo, G. (1989). Physical Mechanisms for Electromagnetic Interaction with Biological Systems. In: Lin, J.C., Ed., Electromagnetic Interaction with Biological Systems, Plenum Press, New York, 179-214. https://doi.org/10.1007/978-1-4684-8059-7_9
|
[170]
|
Markov, M.S. (1994) Biological Effects of Extremely Low Frequency Magnetic Fields. In: Ueno, S., Ed., Biomagnetic Stimulation, Plenum Press, New York, 91-104. https://doi.org/10.1007/978-1-4757-9507-3_7
|
[171]
|
Bauerus, Koch, C.L.M., Sommarin, M., Persson, B.R.R., Salford, L.G. and Eberhardt, J.L. (2003) Interaction between Weak Low Frequency Magnetic Fields and Cell Membranes. Bioelectriomagnetics, 24, 395-402. https://doi.org/10.1002/bem.10136
|
[172]
|
Blackman, C.F., Benane, S.G. and House, D.E. (2001) The Influence of 1.2 μT, 60 Hz Magnetic Fields on Melatonin- and Tamoxifeninduced Inhibition of MCF-7 Cell Growth. Bioelectromagnetics, 22, 122-128. https://doi.org/10.1002/1521-186X(200102)22:2<122::AID-BEM1015>3.0.CO;2-V
|
[173]
|
Weaver, J.C. and Astumian, R.D. (1990) The Response of Living Cells to Very Week Electric Fields: The Thermal Noise Limit. Science, 247, 459-462. https://doi.org/10.1126/science.2300806
|
[174]
|
Adair, R.K. (1991) Constraints on Biological Effects of Weak Extremely-Low Frequency Electromagnetic Fields. Physical Review A, 43, 1039-1048. https://doi.org/10.1103/PhysRevA.43.1039
|
[175]
|
White, D.C. and Woodson, H.H. (1959) Electromechanical Energy Conversion. John Wiley & Sons, New York.
|
[176]
|
Vincze, Gy., Szasz, A. and Szasz, N. (2005) On the Thermal Noise Limit of Cellular Membranes. Bioelectromagnetics, 26, 28-35. https://doi.org/10.1002/bem.20051
|
[177]
|
Bier, M. (2005) Gauging the Strength of Power Frequency Fields against Membrane Electrical Noise. Bioelectromagnetics, 26, 595-609. https://doi.org/10.1002/bem.20148
|
[178]
|
Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18
|
[179]
|
Ferenczy, G.L. and Szasz, A. (2020) Ch. 3. Technical Challenges and Proposals in Oncological Hyperthermia. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Newcastle upon Tyne, 72-90.
|
[180]
|
Lee, S.Y., Fiorentini, G., Szasz, A.M., Szigeti, Gy., Szasz, A. and Minnaar, C.A. (2020) Quo Vadis Oncological Hyperthermia (2020)? Frontiers in Oncology, 10, Article No. 1690. https://doi.org/10.3389/fonc.2020.01690
|
[181]
|
Szasz, A., Vincze, Gy., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extracellular Hyperthermia. Magneto- and Electro-Biology, 22, 103-115. https://doi.org/10.1081/JBC-120024620
|
[182]
|
Anishchenko, V.S., Neiman, A.B., Moss, F. and Schimansky-Geier, L. (1999) Stochastic Resonance: Noise-Enhanced Order. Physics-Uspekhi, 42, 7-36. https://doi.org/10.1070/PU1999v042n01ABEH000444
|
[183]
|
Szasz, A. (1991) An Electronically Driven Instability: The Living State. Physiological Chemistry and Physics and Medical NMR, 23, 43-50.
|
[184]
|
Gingl, Z., Makra, P. and Vajtai, R. (2001) High Signal-to-Noise Ratio Gain by Stochastic Resonance in a Double Well. Fluctuation and Noise Letters, 1, L181-L188. https://doi.org/10.1142/S0219477501000408
|
[185]
|
Szendro, P., Vincze, Gy. and Szasz, A. (1999) Response of Bio-Systems on White Noise Excitation. Hungarian Agricultural Engineering, 12, 31-32.
|
[186]
|
Szendro, P., Vincze, Gy. and Szasz, A. (1998) Origin of Pink-Noise in Bio-Systems. Hungarian Agricultural Engineering, 11, 42-43.
|
[187]
|
Ma, J., Xiao, T., Hou, Z. and Xin, H. (2008) Coherence Resonance Induced by Colored Noise near Hopf Bifurcation. Chaos, 18, Article ID: 043116. https://doi.org/10.1063/1.3013178
|
[188]
|
Bybiec, B. and Gudowska-Nowak, E. (2013) Resonant Activation Driven by Strongly Non-Gaussian Noises.
|
[189]
|
Revelli, J.A., Sanchez, A.D. and Wio, H.S. (2001) Effect of Non Gaussian Noises on the Stochastic Resonance-Like Phenomenon in Gated Traps.
|
[190]
|
Rosso, O.A. and Masoller, C. (2009) Detecting and Quantifying Stochastic and Coherence Resonances via Information-Theory Complexity Measurements. Physical Review E, 79, 040106(R). https://doi.org/10.1103/PhysRevE.79.040106
|
[191]
|
Krauss, P., Metzner, C., Schilling, A., Schütz, C., Tziridis, K., Fabry, B. and Schulze, H. (2017) Adaptive Stochastic Resonance for Unknown and Variable Input Signals. Scientific Reports, 7, Article No. 2450. https://doi.org/10.1038/s41598-017-02644-w
|
[192]
|
Krauss, P., Tziridis, K., Metzner, C., Schilling, A., Hoppe, U. and Schulze, H. (2016) Stochastic Resonance Controlled Upregulation of Internal Noise after Hearing Loss as a Putative Cause of Tinnitus-Related Neuronal Hyperactivity, Hypothesis and Theory. Frontiers in Neuroscience, 10, Article No. 597. https://doi.org/10.3389/fnins.2016.00597
|
[193]
|
West, G.B. and Brown, J.H. (2005) The Origin of Allometric Scaling Laws in Biology from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization. Journal of Experimental Biology, 208, 1575-1592. https://doi.org/10.1242/jeb.01589
|
[194]
|
Trigos, A.S., Pearson, R.B., Paenfuss, A.T., et al. (2018) How the Evolution of Multicellularity Set the Stage for Cancer. British Journal of Cancer, 118, 145-152. https://doi.org/10.1038/bjc.2017.398
|
[195]
|
Alfarouk, K.O., Shayoub, M.E.A., Muddathir, A.K., Elhassan, G.O. and Bashir, A.H.H. (2011) Evolution of Tumour Metabolism Might Reflect Carcinogenesis as a Reverse Evolution Process (Dismantling of Multicellularity). Cancers, 3, 3002-3017. https://doi.org/10.3390/cancers3033002
|
[196]
|
Szentgyorgyi, A. (1978) The Living State and Cancer. Marcel Dekker Inc., New York.
|
[197]
|
Lineweaver, C.H., Bussey, K.J., Blackburn, A.C. and Davies, P.C.W. (2021) Cancer Progression as a Sequence of Atavistic Reversions. BioEssays, 43, Article ID: 2000305. https://doi.org/10.1002/bies.202000305
|
[198]
|
Lineweaver, C.H., Davies, P.C.W. and Vincent, M.D. (2014) Targeting Cancer’s Weaknesses (Not Its Strengths): Therapeutic Strategies Suggested by the Atavistic Model. Bioessays, 36, 827-835. https://doi.org/10.1002/bies.201400070
|
[199]
|
Eyring, H. (1935) The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 3, 107-115. https://doi.org/10.1063/1.1749604
|
[200]
|
Michaelis, L. and Menten, M.L. (1913) Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 49, 333-369. https://doi.org/10.1021/bi201284u
|
[201]
|
Hele, T.J.H. (2014) Quantum Transition-State Theory. Dissertation.
|
[202]
|
Evans, M.G. and Polanyi, M. (1935) Some Applications of the Transition State Method to the Calculation of Reaction Velocities, Especially in Solution. Transactions of the Faraday Society, 31, 875-894. https://doi.org/10.1039/tf9353100875
|
[203]
|
Tsong, T.Y. and Chang, C.H. (2007) A Markovian Engine for a Biological Energy Transducer: The Catalytic Wheel. BioSystems, 88, 323-333. https://doi.org/10.1016/j.biosystems.2006.08.014
|
[204]
|
Savageau, M.A. (1998) Development of Fractal Kinetic Theory for Enzyme-Catalysed Reactions and Implications for the Design of Biochemical Pathways. Biosystems, 47, 9-36. https://doi.org/10.1016/S0303-2647(98)00020-3
|
[205]
|
Bezrukov, S.M. and Vodyanoy, I. (1997) Stochastic Resonance at the Single-Cell Level. Nature, 388, 632-633. https://doi.org/10.1038/41684
|
[206]
|
Pearce, J.A. (2013) Comparative Analysis of Mathematical Models of Cell Death and Thermal Damage Processes. International Journal of Hyperthermia, 29, 262-280. https://doi.org/10.3109/02656736.2013.786140
|
[207]
|
Vincze, Gy., Szasz, O. and Szasz, A. (2015) Generalization of the Thermal Dose of Hyperthermia in Oncology. Open Journal of Biophysics, 5, 97-114. https://doi.org/10.4236/ojbiphy.2015.54009
|
[208]
|
O’Neill, D.P., Peng, T., Stiegler, P., Mayrhauser, U., Koestenbauer, S., Tscheliessnigg, K., et al. (2011) A Three-State Mathematical Model of Hyperthermic Cell Death. Annals of Biomedical Engineering, 39, 570-579. https://doi.org/10.1007/s10439-010-0177-1
|
[209]
|
Vincze, Gy. and Szasz, A. (2018) Similarities of Modulation by Temperature and by Electric Field. Ojbiphy, 8, 95-103. https://doi.org/10.4236/ojbiphy.2018.83008
|
[210]
|
Thompson, W.H. (1999) Quantum Mechanical Transition State Theory and Tunneling Corrections. The Journal of Chemical Physics, 110, 4221-4228. https://doi.org/10.1063/1.478304
|
[211]
|
Tsong, T.Y. and Astumian, R.D. (1988) Electroconformational Coupling: How Membrane-Bound ATPase Transduces Energy from Dynamic Electric Fields. Annual Review of Physiology, 50, 273-290. https://doi.org/10.1146/annurev.ph.50.030188.001421
|
[212]
|
Astumian, R.D. (1994) Electroconformational Coupling of Membrane Proteins. Annals of the New York Academy of Sciences, 720, 136-140. https://doi.org/10.1111/j.1749-6632.1994.tb30441.x
|
[213]
|
Markin, V.S., Liu, D., Rosenberg, M.D. et al. (1992) Resonance Transduction of Low Level Periodic Signals by an Enzyme: An Oscillatory Activation Barrier Model. Biophysical Journal, 61, 1045-1049. https://doi.org/10.1016/S0006-3495(92)81913-6
|
[214]
|
McNamara, B. and Wiesenfeld, K. (1989) Theory of Stochastic Resonance. Physical Review A, 39, 4854-4869. https://doi.org/10.1103/PhysRevA.39.4854
|
[215]
|
Astumian, R.D. (1997) Thermodynamics and Kinetics of a Brownian Motor. Science, 276, 917-922. https://doi.org/10.1126/science.276.5314.917
|
[216]
|
Astumian, R.D. and Bier, M. (1994) Fluctuation Driven Ratchets: Molecular Motors. Physical Review Letters, 72, 1766-1769. https://doi.org/10.1103/PhysRevLett.72.1766
|
[217]
|
Chock, P.B., Tsong, T.Y., et al. (1987) Can Free Energy Be Transduced from Noise? Proceedings of the National Academy of Sciences of the United States of America, 84, 434-438. https://doi.org/10.1073/pnas.84.2.434
|
[218]
|
Astumian, R.D. and Derényi, I. (1998) Fluctuation Driven Transport and Models of Molecular Motors and Pumps. European Biophysics Journal, 27, 474-489. https://doi.org/10.1007/s002490050158
|
[219]
|
Linke, H., Downton, M.T. and Zuckermann, M.J. (2005) Performance Characteristics of Brownian Motors. Chaos, 15, Article ID: 026111. https://doi.org/10.1063/1.1871432
|
[220]
|
Tinoco, I., Sauer, K., Wang, J.C., et al. (2002) Physical Chemistry. Principles and Applications in Biological Sciences. 4th Edition, Prentice-Hall Inc., Hoboken.
|
[221]
|
Astumian, R.D. and Chock, P.B. (1989) Effects of Oscillations and Energy-Driven Fluctuations on the Dynamics of Enzyme Catalsysis and Free-Energy Transduction. Physical Review A, 39, 6416-6435. https://doi.org/10.1103/PhysRevA.39.6416
|
[222]
|
Babbi, G., Baldazzi, D., Savojardo, C., Luigi, M.P. and Casadio, R. (2020) Highlighting Human Enzymes Active in Different Metabolic Pathways and Diseases: The Case Study of EC 1.2.3.1 and EC 2.3.1.9. Biomedicines, 8, 250. https://doi.org/10.3390/biomedicines8080250
|
[223]
|
Romero, P., Wagg, J., Green, M.L., Daiser, D., Krummenacker, M. and Karp, P.D. (2005) Computational Prediction of Human Metabolic Pathways from the Complete Human Genome. Genome Biology, 6, R2. https://doi.org/10.1186/gb-2004-6-1-r2
|
[224]
|
McDonnell, M. and Abbott, D. (2009) What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology. PLOS Computational Biology, 5, e1000348. https://doi.org/10.1371/journal.pcbi.1000348
|
[225]
|
Szasz, A. and Szasz, O. (2020) Ch. 17. Time-Fractal Modulation of Modulated Electro-Hyperthermia (mEHT). In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Newcastle upon Tyne, 377-415.
|
[226]
|
Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal Modulation. Open Journal of Biophysics, 11, 314-350. https://doi.org/10.4236/ojbiphy.2021.113011
|
[227]
|
Szasz, A. (2022) Time-Fractal Modulation—Possible Modulation Effects in Human Therapy. Open Journal of Biophysics, 12, 38-87. https://doi.org/10.4236/ojbiphy.2022.121003
|
[228]
|
Calabro, E. and Magazu, S. (2020) New Perspectives in the Treatment of Tumor Cells by Electromagnetic Radiation at Resonance Frequencies in Cellular Membrane Channels. The Open Biotechnology Journal, 13, 105-110. https://doi.org/10.2174/187407070190130105
|
[229]
|
Hanggi, P., Schmid, G. and Goychuk, I. (2002) Excitable Membranes: Channel Noise, Synchronization, and Stochastic Resonance. In: Kramer, B., Ed., Advances in Solid State Physics, Vol. 42, Springer-Verlag, Berlin, 359-370. https://doi.org/10.1007/3-540-45618-X_28
|
[230]
|
Szasz, O., Szasz, A.M. Minnaar, C. and Szasz, A. (2017) Heating Preciosity—Trends in Modern Oncological Hyperthermia. Open Journal of Biophysics, 7, 116-144. https://doi.org/10.4236/ojbiphy.2017.73010
|
[231]
|
Szasz, O. and Szasz, A. (2014) Oncothermia—Nano-Heating Paradigm. Journal of Cancer Science and Therapy, 6, 117-121. https://doi.org/10.4172/1948-5956.1000259
|
[232]
|
Szasz, A. (2013) Chapter 4. Electromagnetic Effects in Nanoscale Range. In: Shimizu, T. and Kondo, T., Eds., Cellular Response to Physical Stress and Therapeutic Applications, Nova Science Publishers, Inc., Hauppauge, 55-81.
|
[233]
|
Foleti, A., Grimaldi, S., Lisi, A., Ledda, M. and Liboff, A.R. (2013) Bioelctromagnetic Medicine: The Role of Resonance Signaling. Electromagnetic Biology and Medicine, 32, 484-499.
|
[234]
|
Lucia, U., Grisolia, G., Ponzetto, A., Bergandi, L. and Silvagno, F. (2020) Thermomagnetic Resonance Affects Cancer Growth and Motility. Royal Society Open Science, 7, Article ID: 200299. https://doi.org/10.1098/rsos.200299
|
[235]
|
Sahu, S., Ghosh, S., Fujita, D. and Bandyopadhyay, A. (2014) Live Visualizations of Single Isolated Tubulin Protein Self-Assembly via Tunneling Current: Effect of Electromagnetic Pumping during Spontaneous Growth of Microtubule. Scientific Reports, 4, Article No. 7303. https://doi.org/10.1038/srep07303
|
[236]
|
Liboff, A.R. (1997) Electric-Field Ion Cyclotron Resonance. Biolectromagnetics, 18, 85-87. https://doi.org/10.1002/(SICI)1521-186X(1997)18:1<85::AID-BEM13>3.0.CO;2-P
|
[237]
|
Liboff, A.R. (2012) Electromagnetic Vaccination. Medical Hypotheses, 79, 331-333. https://doi.org/10.1016/j.mehy.2012.05.027
|
[238]
|
Krenacs, T., Meggyeshazi, N., Forika, G., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, Article No. 6270. https://doi.org/10.3390/ijms21176270
|
[239]
|
Chi, M.S., Mehta, M.P., Yang, K.L., et al. (2020) Putative Abscopal Effect in Three Patients Treated by Combined Radiotherapy and Modulated Electrohyperthermia. Frontiers in Oncology, 10, Article No. 254. https://doi.org/10.3389/fonc.2020.00254
|
[240]
|
Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2020) Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Frontiers in Oncology, 10, Article No. 376. https://doi.org/10.3389/fonc.2020.00376
|
[241]
|
Chi, K.H. (2020) Tumour-Directed Immunotherapy: Clinical Results of Radiotherapy with Modulated Electro-Hyperthermia. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Newcastle upon Tyne, 206-226.
|
[242]
|
Schirrmacher, V., Lorenzen, D., Van, Gool, S.W., et al. (2017) A New Strategy of Cancer Immunotherapy Combining Hyperthermia/Oncolytic Virus Pretreatment with Specific Autologous Anti-Tumor Vaccination—A Review. Austin Oncology Case Reports, 2, 1-8. https://doi.org/10.26420/austinoncolcaserep.1006.2017
|