[1]
|
Jenson, C. (1904) Experimentelle Untersuchungen über Krebs bei Mäusen. Journal of Cancer Research and Clinical Oncology, 1, 134-138.
https://doi.org/10.1007/BF02022613
|
[2]
|
Loeb, L. (1903) über Transplantation von Tumoren. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 172, 345-368.
https://doi.org/10.1515/9783112371404-013
|
[3]
|
Selawry, O.S., Goldstein, M.N. and Mccormick, T. (1957) Hyperthermia in Tissue-Cultured Cells of Malignant Origin. Cancer Research, 17, 785-791.
|
[4]
|
Lambert, R.A. (1912) Demonstration of the Greater Susceptibility to Heat of Sarcoma Cells as Compared with Actively Proliferating Connective Tissue Cells. Journal of the American Medical Association, 59, 2147-2148.
https://doi.org/10.1001/jama.1912.04270120132016
|
[5]
|
Dewey, W.C. (2009) Arrhenius Relationships from the Molecule and Cell to the Clinic. International Journal of Hyperthermia, 25, 3-20.
https://doi.org/10.1080/02656730902747919
|
[6]
|
van der Zee, J., Vujaskovic, Z., Kindo, M., et al. (2008) The Kadota Fund International Forum 2004—Clinical Group Consensus. International Journal of Hyperthermia, 24, 111-112. https://doi.org/10.1080/02656730801895058
|
[7]
|
McNally, N.J. (1991) Book Reviews. The British Journal of Radiology, 64, 565-565.
https://doi.org/10.1259/0007-1285-64-762-565-a
|
[8]
|
Gabriele, P., Orecchia, R., Ragona, R., et al. (1990) Hyperthermia Alone in the Treatment of Recurrences of Malignant Tumors. Cancer, 66, 2191-2195.
https://doi.org/10.1002/1097-0142(19901115)66:10<2191::AID-CNCR2820661025>3.0.CO;2-8
|
[9]
|
Sannazzari, G.L., Gabriele, P., Orecchia, R., et al. (1989) Results of Hyperthermia, Alone or Combined with Irradiation, in Chest Wall Recurrences of Breast Cancer. Tumori, 75, 284-288. https://doi.org/10.1177/030089168907500320
|
[10]
|
Warren, S. (1935) Preliminary Study of Effect of Artificial Fever upon Hopeless Tumor Cases. American Journal of Roentgenology, 33, 75.
|
[11]
|
Storm, F.K., Elliott, R.S., Harrison, W.H., et al. (1981) Radio Frequency Hyperthermia of Advanced Human Sarcomas. Journal of Surgical Oncology, 17, 91-98.
https://doi.org/10.1002/jso.2930170202
|
[12]
|
LeVeen, H.H., Wapnick, S., Piccone, V., et al. (1976) Tumor Eradication by Radiofrequency Therapy: Response in 21 Patients. JAMA, 235, 2198-2200.
https://doi.org/10.1001/jama.1976.03260460018014
|
[13]
|
Marchal, C., Bey, P., Metz, R., et al. (1982) Treatment of Superficial Human Cancerous Nodules by Local Ultrasound Hyperthermia. British Journal of Cancer, 45, 243-245.
|
[14]
|
Kok, H.P., Wust, P., Stauffer, P.R., et al. (2015) Current State of the Art of Regional Hyperthermia Treatment Planning: A Review. Radiation Oncology, 10, 503.
https://doi.org/10.1186/s13014-015-0503-8
|
[15]
|
Dewhirst, M.W., Vujaskovic, Z., Jones, E., et al. (2005) Re-Setting the Biologic Rationale for Thermal Therapy. International Journal of Hyperthermia, 21, 779-790.
https://doi.org/10.1080/02656730500271668
|
[16]
|
Walker, A., McCallum, H.M., Wheldon, T.E., et al. (1978) Promotion of Metastasis of C3H Mouse Mammary Carcinoma by Local Hyperthermia. British Journal of Cancer, 38, 561-563. https://doi.org/10.1038/bjc.1978.246
|
[17]
|
Dickson, J.A. and Ellis, H.A. (1976) The Influence of Tumor Volume and the Degree of Heating on the Response of the Solid Yoshida Sarcoma to Hyperthermia (40° - 42°). Cancer Research, 36, 1188-1195.
|
[18]
|
Datta, N.R., Ordóñez, S.G., Gaipl, U.S., et al. (2015) Local Hyperthermia Combined with Radiotherapy and/or Chemotherapy: Recent Advances and Promises for the Future. Cancer Treatment Reviews, 41, 742-753.
https://doi.org/10.1016/j.ctrv.2015.05.009
|
[19]
|
Mallory, M., Gogineni, E., Jones, G.C., et al. (2016) Therapeutic Hyperthermia: The Old, the New, and the Upcoming. Critical Reviews in Oncology/Hematology, 97, 56-64. https://doi.org/10.1016/j.critrevonc.2015.08.003
|
[20]
|
Hahn, E.W., Alfieri, A.A. and Kim, J.H. (1978) The Significance of Local Tumor Hyperthermia/Radiation on the Production of Disseminated Disease. Radiation Oncology, 4, 141-142. https://doi.org/10.1016/0360-3016(78)90321-8
|
[21]
|
Ando, K., Urazno, M., Kenton, L., et al. (1987) Effect of Thermochemotherapy on the Development of Spontaneous Lung Metastases. International Journal of Hyperthermia, 3, 453-458. https://doi.org/10.3109/02656738709140415
|
[22]
|
Emami, B., Scott, C., Perez, C.A., et al. (1996) Phase III Study of Interstitial Thermoradiotherapy Compared with Interstitial Radiotherapy Alone in the Treatment of Recurrent or Persistent Human Tumors: A Prospectively Controlled Randomized Study by the Radiation Therapy Oncology Group. International Journal of Radiation Oncology, Biology, Physics, 34, 1097-1104.
https://doi.org/10.1016/0360-3016(95)02137-X
|
[23]
|
Jones, E.L., Oleson, J.R., Prosnitz, L.R., et al. (2005) Randomized Trial of Hyperthermia and Radiation for Superficial Tumors. Journal of Clinical Oncology, 23, 3079-3085. https://doi.org/10.1200/JCO.2005.05.520
|
[24]
|
Harima, Y., Ohguri, T., Imada, H., et al. (2016) A Multicentre Randomised Clinical Trial of Chemoradiotherapy plus Hyperthermia versus Chemoradiotherapy Alone in Patients with Locally Advanced Cervical Cancer. International Journal of Hyperthermia, 32, 801-808. https://doi.org/10.1080/02656736.2016.1213430
|
[25]
|
Vernon, C., Hand, J., Field, S., et al. (1996) Radiotherapy with or without Hyperthermia for Superficial Breast. International Journal of Radiation Oncology, Biology, Physics, 35, 731-744. https://doi.org/10.1016/0360-3016(96)00154-X
|
[26]
|
De Bruijne, M., Holt, B. Van Der, Van Rhoon, G.C., et al. (2010) Evaluation of CEM43° CT90 Thermal Dose in Superficial Hyperthermia: A Retrospective Analysis. Strahlentherapie und Onkologie, 186, 436-443.
https://doi.org/10.1007/s00066-010-2146-x
|
[27]
|
Fatehi, D., Van der Zee, J., Van der Wal, E., et al. (2006) Temperature Data Analysis for 22 Patients with Advanced Cervical Carcinoma Treated in Rotterdam Using Radiotherapy, Hyperthermia and Chemotherapy: A Reference Point Is Needed. International Journal of Hyperthermia, 22, 353-363.
https://doi.org/10.1080/02656730600715796
|
[28]
|
Pandita, T.K., Pandita, S. and Bhaumik, S.R. (2009) Molecular Parameters of Hyperthermia for Radiosensitization. Critical ReviewsTM in Eukaryotic Gene Expression, 19, 235-251. https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i3.50
|
[29]
|
Oei, A.L., Vriend, L.E.M., Crezee, J., Franken, N.A.P. and Krawczyk, P.M. (2015) Effects of Hyperthermia on DNA Repair Pathways: One Treatment to Inhibit Them All. Radiation Oncology, 10, 165. https://doi.org/10.1186/s13014-015-0462-0
|
[30]
|
Lepock, J.R. (2004) Role of Nuclear Protein Denaturation and Aggregation in Thermal Radiosensitization. International Journal of Hyperthermia, 20, 115-130.
https://doi.org/10.1080/02656730310001637334
|
[31]
|
Kampinga, H.H. and Dikomey, E. (2001) Hyperthermic Radio-Sensitization: Mode of Action and Clinical Relevance. International Journal of Radiation Biology, 77, 399-408. https://doi.org/10.1080/09553000010024687
|
[32]
|
Roti Roti, J.L. (2008) Cellular Responses to Hyperthermia (40-46 Degrees C): Cell Killing and Molecular Events. International Journal of Hyperthermia, 24, 3-15.
https://doi.org/10.1080/02656730701769841
|
[33]
|
Griffin, R.J., Dings, R.P.M., Jamshidi-Parsian, A. and Song, C.W. (2010) Mild Temperature Hyperthermia and Radiation Therapy: Role of Tumour Vascular Thermotolerance and Relevant Physiological Factors. International Journal of Hyperthermia, 26, 256-263. https://doi.org/10.3109/02656730903453546
|
[34]
|
Peeken, J.C., Vaupel, P., Combs, S.E. and Combs, S.E. (2017) Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Frontiers in Oncology, 7, Article No. 132. https://doi.org/10.3389/fonc.2017.00132
|
[35]
|
Werthmöller, N., Frey, B., Rückert, M., Lotter, M., Fietkau, R. and Gaipl, U.S. (2016) Combination of Ionising Radiation with Hyperthermia Increases the Immunogenic Potential of B16-F10 Melanoma Cells in Vitro and in Vivo. International Journal of Hyperthermia, 32, 23-30.
https://doi.org/10.3109/02656736.2015.1106011
|
[36]
|
Frey, B., Rückert, M., Deloch, L., Rühle, P.F., Derer, A., Fietkau, R. and Gaipl, U.S. (2017) Immunomodulation by Ionizing Radiation—Impact for Design of Radio-Immunotherapies and for Treatment of Inflammatory Diseases. Immunological Reviews, 280, 231-248. https://doi.org/10.1111/imr.12572
|
[37]
|
Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G. and Garrido, C. (2007) Intracellular and Extracellular Functions of Heat Shock Proteins: Repercussions in Cancer Therapy. Journal of Leukocyte Biology, 81, 15-27.
https://doi.org/10.1189/jlb.0306167
|
[38]
|
van der Zee, J. (2002) Heating the Patient: A Promising Approach? Annals of Oncology, 13, 1173-1184. https://doi.org/10.1093/annonc/mdf280
|
[39]
|
Szasz, A., Szasz, O. and Szasz, N. (2001) Electro-Hyperthermia: A New Paradigm in Cancer Therapy. Deutsche Zeitschrift für Onkologie, 33, 91-99.
https://doi.org/10.1055/s-2001-19447
|
[40]
|
Fiorentini, G. and Szasz, A. (2006) Hyperthermia Today: Electric Energy, a New Opportunity in Cancer Treatment. Journal of Cancer Research and Therapeutics, 2, 41-46. https://doi.org/10.4103/0973-1482.25848
|
[41]
|
Mohamed, F., Marchettini, P., Stuart, O.A., Urano, M. and Sugarbaker, P.H. (2003) Thermal Enhancement of New Chemotherapeutic Agents at Moderate Hyperthermia. Annals of Surgical Oncology, 10, 463-468.
https://doi.org/10.1245/ASO.2003.08.006
|
[42]
|
Lee, S.-Y., Kim, J.-H., Han, Y.-H., et al. (2018) The Effect of Modulated Electro-Hyperthermia on Temperature and Blood Flow in Human Cervical Carcinoma. International Journal of Hyperthermia, 34, 953-960.
https://doi.org/10.1080/02656736.2018.1423709
|
[43]
|
Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2019) The Effect of Modulated Electro-Hyperthermia on Local Disease Control in HIV-Positive and -Negative Cervical Cancer Women in South Africa: Early Results from a Phase III Randomised Controlled Trial. PLOS ONE, 14, e0217894.
https://doi.org/10.1371/journal.pone.0217894
|
[44]
|
Minnaar, C.A., Kotzen, J.A., Naidoo, T., et al. (2020) Analysis of the Effects of mEHT on the Treatment-Related Toxicity and Quality of Life of HIV-Positive Cervical Cancer Patients. International Journal of Hyperthermia, 37, 263-272.
https://doi.org/10.1080/02656736.2020.1737253
|
[45]
|
Andocs, G., Renner, H., Balogh, L., et al. (2009) Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. Strahlentherapie und Onkologie, 185, 120-126. https://doi.org/10.1007/s00066-009-1903-1
|
[46]
|
Yang, K.L., Huang, C.C., Chi, M.S., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092. https://doi.org/10.18632/oncotarget.11444
|
[47]
|
Tsang, Y.W., Huang, C.C., Yang, K.L., et al. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMC Cancer, 15, Article No. 708.
https://doi.org/10.1186/s12885-015-1690-2
|
[48]
|
Qin, W., Akutsu, Y., Andocs, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379. https://doi.org/10.3892/or.2014.3500
|
[49]
|
Andocs, G., Meggyeshazi, N., Balogh, L., et al. (2015) Upregulation of Heat Shock Proteins and the Promotion of Damage-Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modulated Electrohyperthermia. Cell Stress and Chaperones, 20, 37-46. https://doi.org/10.1007/s12192-014-0523-6
|
[50]
|
Meggyeshazi, N., Gabor, A., Spisak, S., et al. (2013) Early Changes in mRNA and Protein Expression Related to Cancer Treatment by Modulated Electrohyperthermia. Conference Papers in Medicine, 2013, Article ID: 249563.
https://doi.org/10.1155/2013/249563
|
[51]
|
Cha, J., Jeon, T.W., Lee, C.G., et al. (2015) Electro-Hyperthermia Inhibits Glioma Tumorigenicity through the Induction of E2F1-Mediated Apoptosis. International Journal of Hyperthermia, 31, 784-792.
https://doi.org/10.3109/02656736.2015.1069411
|
[52]
|
Jeon, T.W., Yang, H., Lee, C.G., et al. (2016) Electro-Hyperthermia Up-Regulates Tumour Suppressor Septin 4 to Induce Apoptotic Cell Death in Hepatocellular Carcinoma. International Journal of Hyperthermia, 32, 648-656.
https://doi.org/10.1080/02656736.2016.1186290
|
[53]
|
Jeung, T.S., Ma, S.Y., Yu, J., et al. (2013) Cases That Respond to Oncothermia Monotherapy. Conference Papers in Medicine, 2013, Article ID: 392480.
https://doi.org/10.1155/2013/392480
|
[54]
|
Lindegaard, J.C. (1992) Winner of the Lund Science Award 1992 Thermosensitization Induced by Step-Down Heating: A Review on Heat-Induced Sensitization to Hyperthermia Alone or Hyperthermia Combined with Radiation. International Journal of Hyperthermia, 8, 561-586. https://doi.org/10.3109/02656739209037994
|
[55]
|
Lindegaard, J.C. and Overgaard, J. (1988) Effect of Step-Down Heating on Hyperthermic Radiosensitization in an Experimental Tumor and a Normal Tissue in Vivo. Journal of Radiotherapy and Oncology, 11, 143-151.
https://doi.org/10.1016/0167-8140(88)90250-2
|
[56]
|
Szigeti, G.P., Szasz, O. and Hegyi, G. (2016) Personalised Dosing of Hyperthermia. Journal of Cancer Diagnosis, 1, 107. https://doi.org/10.4172/2476-2253.1000107
|
[57]
|
Hall, E.J. and Roizin-towle, L. (2013) Biological Effects of Heat. Cancer Research, 44, 4708-4713.
|
[58]
|
Rybinski, M., Szymanska, Z., Lasota, S., et al. (2013) Modelling the Efficacy of Hyperthermia Treatment. Journal of the Royal Society Interface, 10, Article ID: 20130527. https://doi.org/10.1098/rsif.2013.0527
|
[59]
|
Hegyi, G., Szigeti, G.P. and Szász, A. (2013) Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 672873.
https://doi.org/10.1155/2013/672873
|
[60]
|
Hager, E., Dziambor, H., Hohmann, D., et al. (1999) Deep Hyperthermia with Radiofrequencies in Patients with Liver Metastases from Colorectal Cancer. Anticancer Research, 19, 3403-3408.
|
[61]
|
Ferrari, V.D., De Ponti, S., Valcamonico, F., et al. (2007) Deep Electro-Hyperthermia (EHY) with or without Thermo-Active Agents in Patients with Advanced Hepatic Cell Carcinoma: Phase II Study. Journal of Clinical Oncology, 25, Article No. 15168.
https://doi.org/10.1200/jco.2007.25.18_suppl.15168
|
[62]
|
Fiorentini, G., Giovanis, P., Rossi, S., et al. (2006) A Phase II Clinical Study on Relapsed Malignant Gliomas Treated with Electro-Hyperthermia. In Vivo, 20, 721-724.
|
[63]
|
Fiorentini, G., Sarti, D., Milandri, C., et al. (2019) Modulated Electrohyperthermia in Integrative Cancer Treatment for Relapsed Malignant Glioblastoma and Astrocytoma: Retrospective Multicenter Controlled Study. Integrative Cancer Therapies, Epub 2018. https://doi.org/10.1177/1534735418812691
|
[64]
|
Fiorentini, G., Sarti, D., Casadei, V., et al. (2019) Modulated Electro-Hyperthermia as Palliative Treatment for Pancreatic Cancer: A Retrospective Observational Study on 106 Patients. Integrative Cancer Therapies, Epub 2019.
https://doi.org/10.1177/1534735419878505
|
[65]
|
Minakuchi, H., Hirayama, R., Sawai, S., et al. (1990) Clinical Trials of Long-Term RF Local Hyperthermia for Advanced Gastric Cancer. The Japanese Journal of Surgery, 20, 238-239. https://doi.org/10.1007/BF02470777
|
[66]
|
Lee, S.Y., Lee, N.R., Cho, D., et al. (2017) Treatment Outcome Analysis of Chemotherapy Combined with Modulated Electro-Hyperthermia Compared with Chemotherapy Alone for Recurrent Cervical Cancer, Following Irradiation. Oncology Letters, 14, 73-78. https://doi.org/10.3892/ol.2017.6117
|
[67]
|
Gadaleta-Caldarola, G., Infusino, S., Galise, I., et al. (2014) Sorafenib and Locoregional Deep Electro-Hyperthermia in Advanced Hepatocellular Carcinoma: A Phase II Study. Oncology Letters, 8, 1783-1787. https://doi.org/10.3892/ol.2014.2376
|
[68]
|
Yoo, H.J., Lim, M.C., Seo, S.S., et al. (2019) Phase I/II Clinical Trial of Modulated Electro-Hyperthermia Treatment in Patients with Relapsed, Refractory or Progressive Heavily Treated Ovarian Cancer. Japanese Journal of Clinical Oncology, 49, 832-838. https://doi.org/10.1093/jjco/hyz071
|
[69]
|
Andocs, G., Rehman, M.U., Zhao. Q-L., et al. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cells. Cell Death Discovery, 2, 16039.
https://doi.org/10.1038/cddiscovery.2016.39
|
[70]
|
Meggyeshazi, N., Andocs, G., Balogh, L., et al. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 190, 815-822.
https://doi.org/10.1007/s00066-014-0617-1
|
[71]
|
Vancsik, T., Kovago, C., Kiss, E., et al. (2018) Modulated Electro-Hyperthermia Induced Loco-Regional and Systemic Tumor Destruction in Colorectal Cancer Allografts. Journal of Cancer, 9, 41-53. https://doi.org/10.7150/jca.21520
|
[72]
|
Papp, E., Vancsik, T., Kiss, E., et al. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016
|
[73]
|
Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2020) Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Frontiers in Oncology, 10, Article No. 376.
https://doi.org/10.3389/fonc.2020.00376
|
[74]
|
Minnaar, C.A., Maposa, I., Kotzen, J.A., et al. (2022) Effects of Modulated Electro-Hyperthermia (mEHT) on Two and Three Year Survival of Locally Advanced Cervical Cancer Patients. Cancers, 14, 656. https://doi.org/10.3390/cancers14030656
|
[75]
|
Kumar, T., Patel, N. and Talwar, A. (2010) Spontaneous Regression of Thoracic Malignancies. Respiratory Medicine, 104, 1543-1550.
https://doi.org/10.1016/j.rmed.2010.04.026
|
[76]
|
Herwig-Carl, M.C. and Loeffler, K.U. (2020) Regression of Periocular Basal Cell Carcinoma: A Report of Four Cases with Clinicopathologic Correlation. Ocular Oncology and Pathology, 6, 107-114. https://doi.org/10.1159/000501370
|
[77]
|
Liu, J., Wu, X.W., Hao, X.W., et al. (2020) Spontaneous Regression of Stage III Neuroblastoma: A Case Report. World Journal of Clinical Cases, 8, 436-443.
https://doi.org/10.12998/wjcc.v8.i2.436
|
[78]
|
Challis, G.B. and Stam, H.J. (1990) The Spontaneous Regression of Cancer: A Review of Cases from 1900 to 1987. Acta Oncologica, 29, 545-550.
https://doi.org/10.3109/02841869009090048
|
[79]
|
Hobohm, U. (2001) Fever and Cancer in Perspective. Cancer Immunology, Immunotherapy, 50, 391-396. https://doi.org/10.1007/s002620100216
|
[80]
|
Khanal, N., Bhatt, V.R. and Armitage, J.O. (2015) Spontaneous Regression of Chronic Lymphocytic Leukemia. Journal of Case Reports in Practice, 3, 67-70.
|
[81]
|
Herishanu, Y., Solar, I., Ben-Ezra, J., et al. (2013) Complete Spontaneous Regression of Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 31, 2014-2016.
|
[82]
|
Thomas, R., Ribeiro, I., Shepherd, P., et al. (2002) Spontaneous Clinical Regression in Chronic Lymphocytic Leukaemia. British Journal of Haematology, 116, 341-345.
https://doi.org/10.1046/j.1365-2141.2002.03286.x
|
[83]
|
Nakhla, P.S., Butera, J.N., Treaba, D.O., et al. (2013) Spontaneous Regression of Chronic Lymphocytic Leukemia to a Monoclonal B-Lymphocytosis or to a Normal Phenotype. Leukemia & Lymphoma, 54, 1647-1651.
https://doi.org/10.3109/10428194.2012.753449
|
[84]
|
Printz, C. (2001) Spontaneous Regression of Melanoma May Offer Insight into Cancer Immunology. JNCI: Journal of the National Cancer Institute, 93, 1047-1048.
https://doi.org/10.1093/jnci/93.14.1047
|
[85]
|
Hobohm, U., Stanford, J.L. and Grange, J.M. (2008) Pathogen-Associated Molecular Pattern in Cancer Immunotherapy. Critical ReviewsTM in Immunology, 28, 95-107.
https://doi.org/10.1615/CritRevImmunol.v28.i2.10
|
[86]
|
Thomas, J.A. and Badini, M. (2011) The Role of Innate Immunity in Spontaneous Regression of Cancer. Indian Journal of Cancer, 48, 246-251.
https://doi.org/10.4103/0019-509X.82887
|
[87]
|
Ricci, S.B. and Cerchiari, U. (2010) Spontaneous Regression of Malignant Tumors: Importance of the Immune System and Other Factors (Review). Oncology Letters, 1, 941-945. https://doi.org/10.3892/ol.2010.176
|
[88]
|
Jessy, T. (2011) Immunity over Inability: The Spontaneous Regression of Cancer. Journal of Natural Science, Biology and Medicine, 2, 43-49.
https://doi.org/10.4103/0976-9668.82318
|
[89]
|
Overwijk, W.W., Theoret, M.R., Finkelstein, S.E., et al. (2003) Tumor Regression and Autoimmunity after Reversal of a Functionally Tolerant State of Self-Reactive CD8+ T Cells. Journal of Experimental Medicine, 198, 569-580.
https://doi.org/10.1084/jem.20030590
|