[1]
|
Zeng, X., Ye, Y., Zou, S., Gou, Q., Wen, Y. and Ou, P. (2017) First-Principles Study of the Nonlinear Elasticity of Rare-Earth Hexaborides REB6 (RE = La, Ce). Crystals, 7, 320. https://doi.org/10.3390/cryst7110320
|
[2]
|
Ji, X.H., Zhang, Q.Y., Xu, J.Q. and Zhao, Y.M. (2011) Rare-Earth Hexaborides Nanostructures: Recent Advances in Materials, Characterization and Investigations of Physical Properties. Progress in Solid State Chemistry, 39, 51-69. https://doi.org/10.1016/j.progsolidstchem.2011.04.001
|
[3]
|
Liu, H., Zhang, X., Xiao, Y. and Zhang, J. (2018) The Electronic Structures and Work Functions of (100) Surface of Typical Binary and Doped REB6 Single Crystals. Applied Surface Science, 434, 613-619. https://doi.org/10.1016/j.apsusc.2017.10.233
|
[4]
|
Liu, H., Zhang, X., Ning, S., Xiao, Y. and Zhang, J. (2017) The Electronic Structure and Work Functions of Single Crystal LaB6 Typical Crystal Surfaces. Vacuum, 143, 245-250. https://doi.org/10.1016/j.vacuum.2017.06.029
|
[5]
|
Uijttewaal, M.A., De Wijs, G.A. and De Groot, R.A. (2006) Ab Initio and Work Function and Surface Energy Anisotropy of LaB6. The Journal of Physical Chemistry B, 110, 18459-18465. https://doi.org/10.1021/jp063347i
|
[6]
|
Yu, Y., Wang, S., Li, W., Chen, H. and Chen, Z. (2018) Synthesis of Single- Crystalline Lanthanum Hexaboride Nanocubes by a Low Temperature Molten Salt Method. Materials Chemistry and Physics, 207, 325-329. https://doi.org/10.1016/j.matchemphys.2017.12.081
|
[7]
|
Zhang, M., et al. (2008) A Low-Temperature Route for the Synthesis of Nanocrystalline LaB6. Journal of Solid State Chemistry, 181, 294-297. https://doi.org/10.1016/j.jssc.2007.12.011
|
[8]
|
Yu, Y., Wang, S., Li, W. and Chen, Z. (2018) Low Temperature Synthesis of LaB6 Nanoparticles by a Molten Salt Route. Powder Technology, 323, 203-207. https://doi.org/10.1016/j.powtec.2017.09.049
|
[9]
|
Dou, Z.-H., et al. (2015) A New Method of Preparing NdB6 Ultra-Fine Powders. Rare Metals, 1-7. https://doi.org/10.1007/s12598-015-0596-0
|
[10]
|
Yadav, K.K., Sreekanth, M., Ghosh, S., Ganguli, A.K. and Jha, M. (2020) Excellent Field Emission from Ultrafine Vertically Aligned Nanorods of NdB6 on Silicon Substrate. Applied Surface Science, 526, Article ID: 146652. https://doi.org/10.1016/j.apsusc.2020.146652
|
[11]
|
Wang, G., Brewer, J.R., Chan, J.Y., Diercks, D.R. and Cheung, C.L. (2009) Morphological Evolution of Neodymium Boride Nanostructure Growth by Chemical Vapor Deposition. The Journal of Physical Chemistry C, 113, 10446-10451. https://doi.org/10.1021/jp901717h
|
[12]
|
Ali, N. and Woods, S.B. (1983) Low Temperature Thermoelectric Power of LaB6, PrB6 and NdB6. Solid State Communications, 46, 33-35. https://doi.org/10.1016/0038-1098(83)90024-8
|
[13]
|
Ding, Q., Zhao, Y., Xu, J. and Zou, C. (2007) Large-Scale Synthesis of Neodymium Hexaboride Nanowires by Self-Catalyst. Solid State Communications, 141, 53-56. https://doi.org/10.1016/j.ssc.2006.10.001
|
[14]
|
Xu, J., et al. (2013) Excellent Field-Emission Performances of Neodymium Hexaboride (NdB6) Nanoneedles with Ultra-Low Work Functions. Advanced Functional Materials, 23, 5038-5048. https://doi.org/10.1002/adfm201301980
|
[15]
|
Tsuji, S., Endo, T., Kobayashi, S., Yoshino, Y., Sera, M. and Iga, F. (2002) Rapid Suppression of the Metamagnetic Transition for H 111 in NdB6 by La Doping. Journal of the Physical Society of Japan, 71, 2994-3002. https://doi.org/10.1143/JPSJ.71.2994
|
[16]
|
Liang, C.-L., Zhang, X., Zhang, J.-X., Zhang, F.-X. and Wang, Y. (2015) Preparation and Property of La1-xNdxB6 Cathode Material. Journal of Inorganic Materials, 30, 363-368. https://doi.org/10.15541/jim20140471
|
[17]
|
Li, Q., et al. (2015) Single-Crystalline LaxNd1-xB6 Nanowires: Synthesis, Characterization and Field Emission Performance. Journal of Materials Chemistry C, 3, 7476-7482. https://doi.org/10.1039/C5TC00804B
|
[18]
|
Giannozzi, P., et al. (2017) Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29, Article ID: 465901. https://doi.org/10.1088/1361-648X/aa8f79
|
[19]
|
Hobbs, D., Kresse, G. and Hafner, J. (2000) Fully Unconstrained Noncollinear Magnetism within the Projector Augmented-Wave Method. Physical Review B, 62, 11556-11570. https://doi.org/10.1103/PhysRevB.62.11556
|
[20]
|
Hacker Jr., H. and Lin, M.S. (1968) Magnetic Susceptibility of Neodymium Hexaboride. Solid State Communications, 6, 379-381. https://doi.org/10.1016/0038-1098(68)90161-0
|
[21]
|
Tekoglu, E., Agaogullari, D., Yürektürk, Y., Bulut, B. and Ovecoglu, M.L. (2018) Characterization of LaB6 Particulate-Reinforced Eutectic Al-12.6 wt% Si Composites Fabricated via Mechanical Alloying and Spark Plasma Sintering. Powder Technology, 340, 473-483. https://doi.org/10.1016/j.powtec.2018.09.055
|
[22]
|
Xiao, Y., Zhang, X., Li, R., Liu, H., Zhou, N. and Zhang, J. (2021) Single-Crystal LaB6 Field Emission Array is Rapidly Fabricated by Ultraviolet Femtosecond Laser and Its Field Electronic Structure Characteristics. Vacuum, 184, Article ID: 109987. https://doi.org/10.1016/j.vacuum.2020.109987
|
[23]
|
Soloviova, T.O., Karasevska, O.P., Vleugels, J. and Loboda, P.I. (2021) Thermal Dependent Properties of LaB6-MeB2 Eutectic Composites. Ceramics International, 47, 17667-17677. https://doi.org/10.1016/j.ceramint.2021.03.086
|
[24]
|
Ivashchenko, V.I., Turchi, P.E.A., Shevchenko, V.I., Medukh, N.R., Leszczynski, J. and Gorb, L. (2018) Electronic, Thermodynamics and Mechanical Properties of LaB6 from First-Principles. Physica B: Condensed Matter, 531, 216-222. https://doi.org/10.1016/j.physb.2017.12.044
|
[25]
|
Otani, S., Honma, S., Yajima, Y. and Ishizawa, Y. (1993) Preparation of LaB6 Single Crystals from a Boron-Rich Molten Zone by the Floating Zone Method. Journal of Crystal Growth, 126, 466-470. https://doi.org/10.1016/0022-0248(93)90052-X
|
[26]
|
Bai, L., Ma, N. and Liu, F. (2009) Structure and Chemical Bond Characteristics of LaB6. Physica B: Condensed Matter, 404, 4086-4089. https://doi.org/10.1016/j.physb.2009.07.189
|
[27]
|
Ghimire, M.P., Rai, D.P., Patra, P.K., Mohanty, A.K. and Thapa, R.K. (2012) Study of Bulk Modulus, Volume, Energy, Lattice Parameters and Magnetic Moments in Rare Earth Hexaborides Using Density Functional Theory. Journal of Physics: Conference Series, 377, 12084. https://doi.org/10.1088/1742-6596/377/1/012084
|
[28]
|
Chen, C.-H., Aizawa, T., Iyi, N., Sato, A. and Otani, S. (2004) Structural Refinement and Thermal Expansion of Hexaborides. Journal of Alloys and Compounds, 366, L6-L8. https://doi.org/10.1016/S0925-8388(03)00735-7
|
[29]
|
Simsek, T., Avar, B., Ozcan, S. and Kalkan, B. (2019) Nano-Sized Neodymium Hexaboride: Room Temperature Mechanochemical Synthesis. Physica B: Condensed Matter, 570, 217-223. https://doi.org/10.1016/j.physb.2019.06.047
|
[30]
|
Han, W., Zhang, H., Chen, J., Zhao, Y., Fan, Q. and Li, Q. (2015) Synthesis of Single-Crystalline NdB 6 Submicroawls via a Simple Flux-Controlled Self-Catalyzed Method. RSC Advances, 5, 12605-12612. https://doi.org/10.1039/C4RA13129K
|
[31]
|
Blomberg, M.K., Merisalo, M.J., Korsukova, M.M. and Gurin, V.N. (1995) Single-Crystal X-Ray Diffraction Study of NdB6, EuB6 and YbB6. Journal of Alloys and Compounds, 217, 123-127. https://doi.org/10.1016/0925-8388(94)01313-7
|
[32]
|
Fan, Q.H., et al. (2013) Field Emission from One-Dimensional Single-Crystalline NdB6 Nanowires. Journal of Rare Earths, 31, 145-148. https://doi.org/10.1016/S1002-0721(12)60248-8
|
[33]
|
Xiao, L., et al. (2012) Origins of High Visible Light Transparency and Solar Heat- Shielding Performance in LaB6. Applied Physics Letters, 101, 41913. https://doi.org/10.1063/1.4733386
|
[34]
|
Hasan, M., Sugo, H. and Kisi, E. (2013) Low Temperature Carbothermal and Boron Carbide Reduction Synthesis of LaB6. Journal of Alloys and Compounds, 578, 176-182. https://doi.org/10.1016/j.jallcom.2013.05.008
|
[35]
|
Sandeep, M.P., Rai, D.P., Patra, P.K., Mohanty, A.K. and Thapa, R.K. (2012) Study of Bulk Modulus, Volume, Energy, Lattice Parameters and Magnetic Moments in Rare Earth Hexaborides Using Density Functional Theory. Journal of Physics: Conference Series, 377, 12084. https://doi.org/10.1088/1742-6596/377/1/012084
|
[36]
|
Hasegawa, A. and Yanase, A. (1977) Energy Bandstructure and Fermi Surface of LaB6 by a Self-Consistent APW Method. Journal of Physics F: Metal Physics, 7, 1245-1260. https://doi.org/10.1088/0305-4608/7/7/023
|
[37]
|
Mackinnon, I., Alarco, J. and Talbot, P. (2013) Metal Hexaborides with Sc, Ti or Mn. Modeling and Numerical Simulation of Material Science, 3, 158-169. https://doi.org/10.4236/mnsms.2013.34023
|
[38]
|
Bao, L.-H., Zhang, J.-X., Zhang, N., Li, X.-N. and Zhou, S.-L. (2012) In Situ (LaxGd1-x)B6 Cathode Materials Prepared by the Spark Plasma Sintering Technique. Physica Scripta, 85, 35710. https://doi.org/10.1088/0031-8949/85/03/035710
|
[39]
|
Chao, L., Bao, L., Shi, J., Wei, W., Tegus, O. and Zhang, Z. (2015) The Effect of Sm-Doping on Optical Properties of LaB6 Nanoparticles. Journal of Alloys and Compounds, 622, 618-621. https://doi.org/10.1016/j.jallcom.2014.10.141
|
[40]
|
Hasan, M.M., Cuskelly, D., Sugo, H. and Kisi, E.H. (2015) Low Temperature Synthesis of Low Thermionic Work Function (LaxBa1-x)B6. Journal of Alloys and Compounds, 636, 67-72. https://doi.org/10.1016/j.jallcom.2015.02.105
|
[41]
|
Luo, K., et al. (2016) Crystal Structures and Mechanical Properties of M (Mg, Sr, Ba, La) xCa1-xB6 Solid Solution: A First Principles Study. Ceramics International, 42, 6632-6639. https://doi.org/10.1016/j.ceramint.2016.01.002
|
[42]
|
Qin, P., Xu, C. and Chen, D. (2012) Electronic and Optical Properties of RB6 (R = La, Nd): A Computer Aided Design. Advanced Materials Research, 571, 239-242. https://doi.org/10.4028/www.scientific.net/AMR.571.239
|