Applications of a new In vivo tumor spheroid based shell-less chorioallantoic membrane 3-D model in bioengineering research


The chicken chorioallantoic membrane (CAM) is a classical in vivo biological model in studies of angiogenesis. Combined with the right tumor system and experimental configuration this classical model can offer new approaches to investigating tumor processes. The increase in development of biotechnolo- gical devices for cancer diagnosis and treatment, calls for more sophisticated tumor models that can easily adapt to the technology, and provide a more accurate, stable and consistent platform for rapid quantitative and qualitative analysis. As we discuss a variety of applications of this novel in vivo tumor spheroid based shell-less CAM model in biomedical engineering research, we will show that it is extremely versatile and easily adaptable to an array of biomedical applications. The model is particularly useful in quantitative studies of the progression of avascular tumors into vascularized tumors in the CAM. Its environment is more stable, flat and has a large working area and wider field of view excellent for imaging and longitudinal studies. Finally, rapid data acquisition, screening and validation of biomedical devices and therapeutics are possible with the short experimental window.

Share and Cite:

Magalhães, N. , Liaw, L. , Berns, M. , Cristini, V. , Chen, Z. , Stupack, D. and Lowengrub, J. (2010) Applications of a new In vivo tumor spheroid based shell-less chorioallantoic membrane 3-D model in bioengineering research. Journal of Biomedical Science and Engineering, 3, 20-26. doi: 10.4236/jbise.2010.31003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Zietarska, M. et al. (2007) Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol Carcinog, 46(10), 872-85.
[2] Nakatsu, M.N. and Hughes, C.C. (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol, 443, 65-82.
[3] Claudia F. et al (2007) Engineering tumors with 3D scaffolds. Nature Methods, 4 (10): 855-860.
[4] Szpaderska, A.M. and DiPietro, L.A. (2003) In vitro matrigel angiogenesis model. Methods Mol Med, 78, 311-315.
[5] Duong, H.S. et al. (2005) A novel 3-dimensional culture system as an in vitro model for studying oral cancer cell invasion. Int J Exp Pathol, 86(6), 365-74.
[6] Hammer-Wilson, M.J., Cao, D., Kimel, S. and Berns, M.W. (2002) Photodynamic parameters in the chick chorioallantoic membrane (CAM) bioassay for photo- sensitizers and administered intraperitoneally (IP) into the chick embryo. Photochem. Photobiol. Sci., 1, 721-728.
[7] Santini, M. and Rainaldi, G. (1999) Three-dimensional spheroid model in tumor biology. Pathobiology, 67, 148- 157.
[8] Liang, Y., Pjesivac-Grbovic, J., Cantrell, C. and Freyer, J.P. (2005) A multiscale model for avascular tumor growth. Biophysical Journal, 89, 3884-3894.
[9] Madsen, S.J, Sun, C.H., Tromberg, B.J., Wallace, V.P. and Hirschberg, H. (2000) Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid. Photochemistry and Photobiology, 72, 128-134.
[10] Reyes-Aldasoro, C.C. et al. (2008) Estimation of apparent tumor vascular permeability from multiphoton fluorescence microscopic images of P22 rat sarcomas in vivo. Microcirculation, 15(1), 65-79.
[11] De Magalh?es, N., Liaw, L.H.L., Li, L., Liogys, A., Madsen, S.J., Hirschberg, H. and Tromberg, B.J. (2006) Investigating the effects of combined photodynamic and anti-angiogenic therapies using a three-dimensional in vivo brain tumor system. SPIE Proceedings on Photonic Therapeutics and Diagnostics, 6078, 503-508.
[12] Knighton, D. et al. (1975) Study of avascular and vascular phases of tumor growth in chick embryo. Clinical Research, 23(4), 557.
[13] Ishiwata, I. et al. (1999) Tumor angiogenesis factors produced by cancer cells. Hum Cell, 12(1), 37-46.
[14] Ribatti, D., Nico, B., Vacca, A., Roncali, L., Burri, P. and Djonov, V. (2001) Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. The Anatomical Record, 264, 317-324.
[15] Stewart, J. (1999) Calculus, Brooks/Cole Publishing Company, 6, 378.
[16] Dunn, B.E. (1974) Technique of shell-less culture of the 72-hour avian embryo. Poult Sci, 53(1), 409-412.
[17] Jakobson, A.M., Hahnenberger, R. and Magnusson, A. (1989) A simple method for shell-less cultivation of chick embryos. Pharmacol Toxicol, 64(2), 193-195.
[18] Ono, T. (2000) Exo ovo culture of avian embryos. Methods Mol Biol, 135, 39-46.
[19] Vargas, A., Zeisser-Labouèbe, M., Lange, N., Gurny, R., Delie, F. (2007) The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Advanced Drug Delivery Reviews, 59(11), 1162-1176.
[20] Hammer-Wilson, M.J., Akian, L., Espinoza, J., Kimel, S. and Berns, M.W. (1999) Photodynamic parameters in the chick chorioallantoic membrane (CAM) bioassay for topically applied photosensitizers. J. Photochem. Photobiol, 53, 44-52.
[21] Vargas, A., Eid, M., Fanchaouy, M., Gurny, R., Delie, F. (2008) In vivo photodynamic activity of photosensitizer- loaded nanoparticles: formulation properties, administra- tion parameters and biological issues involved in PDT outcome. European Journal of Pharmaceutics and Bio- pharmaceutics, 69, 43-53.
[22] Imtiaz, A. et al (2009) Introducing Nanochemo- prevention as a Novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin- 3-gallate. Cancer Res, 69(5), 1712-1716.
[23] Chen, Z. (2004) Optical doppler tomography. In Handbook of Coherent Domain Optical Methods, Tuchin V.V. (ed), Kluwer Academic Publishers, Boston, 2, 315- 342.
[24] Ding, Z, Zhao, Y, Ren, H, Nelson, J. and Chen, Z. (2002) Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Optics Express, 10: 236-245.
[25] Chen, Z., Milner, T., Srinivas, S., Malekafzali, A., Wang, X., Van Gemert, M. and Nelson, J. (1997) Imaging in vivo blood flow velocity using optical doppler tomo- graphy. Opt. Lett., 22, 1119-1121.
[26] Chen, Z. Milner and T.E et al. (2000) Noninvasive imaging of in vivo blood flow velocity using optical doppler tomography. Optical Low Coherence Reflec- tometry and Tomography, SPIE Milestone Series Book of Selected Papers.
[27] Baumal, C.R. (1999) Clinical applications of optical coherence tomography. Curr Opin Ophthalmol, 10(3), 182-188.
[28] Donald, I., MacVicar, J. and Brown, T.G. (1958) Inves- tigation of abdominal masses by pulsed ultrasound. Lancet, 1(7032), 1188-1195.
[29] Kehlet-Barton, J. et al. (1999) Three-dimensional recon- struction of blood vessels from in vivo color Doppler optical coherence tomography images. Dermatology, 198(4), 355-361.
[30] Szkulmowska, A. et al. (2008) Phase-resolved doppler optical coherence tomography--limitations and improve- ments. Opt Lett, 33(13), 1425-1427.
[31] Gomez-Lopez, G. and Valencia, A. (2008) Bioin- formatics and cancer research: building bridges for translational research. Clin Transl Oncol, 10(2), 85-95.
[32] Roose, T., Chapman, S.J. and Maini, P.K. (2007) Mathe- matical models of avascular tumor growth, SIAM Review, 49, 179-208.
[33] Cristini Cristini, V., Frieboes, H.B., Li, X., Lowengrub, J. S., Macklin, P., Sanga, S., Wise, S.M. and Zheng, X. (2008) Nonlinear modeling and simulation of tumor growth. In Modeling and simulation in science,
[34] engineering and technology, ed. Bellomo, N., Chaplain, M.A.J., De Angeles, E., Birkaeuser, Boston. Macklin, P. and Lowengrub, J. (2007) Nonlinear simulation of the effect of microenvironment on tumor growth. J Theor Biol, 245(4), 677-704.
[35] Wise, S.M., Lowengrub, J.S., Frieboes, H.B., and Cristini, V. (2008) Three-dimensional multispecies nonlinear tumor growth—I Model and numerical method. J. Theor. Biol., 253, 524-543.
[36] Bearer, E S., Lowengrub, J S., Frieboes, H.B., Chuang, Y.L., Jin, F., Wise, S.M., Ferrari, M., Agus, D.B., Cristini, V. (2009) Multiparameter computational modeling of tumor invasion. Cancer Res., 69, 4493- 4501.
[37] Cristini, V., Li, X., Lowengrub, J.S. and Wise, S.M. (2009), Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J Math Biol, 58, 723-63.
[38] Mantzaris, N.V, Steve, S. and Othmer, H.G. (2004) Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol., 49, 111-187.
[39] Frieboes, H.B. et al. (2007) Computer simulation of glioma growth and morphology. Neuroimage, 37 (Suppl 1), 59-70.
[40] Macklin, P., McDougall, S., Anderson, A.R.A., Chaplain, M.A.J., Cristini, V. and Lowengrub, J.S. (2009) Multiscale modeling and nonlinear simulation of vascular tumor growth. J. Math. Biol., 58, 765-798.
[41] Sinek, J.P., Sanga, S., Zheng, X., Frieboes, H.B., Ferrari, M. and Cristini, V. (2009) Predicting drug pharmaco- kinetics and effect in vascularized tumors using computer simulation. J. Math Biol, 58, 485-510
[42] Frieboes, H.B., et al. (2006) An integrated compu- tational/experimental model of tumor invasion. Cancer Res, 66(3), 1597-604.
[43] Madsen, S.J., Sun, C.H., Tromberg, B.J., Cristini, V., De Magalh?es, N. and Hirschberg, H. (2006) Multicell tumor spheroids in photodynamic therapy. Lasers Surg Med, 38(5), 555-564.
[44] Sinek, J. et al (2004) Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles. Biomed Microdevices, 6(4), 297-309.
[45] Herzenberg, L. et al. (2004) American cancer society. Clinical Oncology (Blackwell Publishing), 254-260.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.