[1]
|
Cabrele, C. and Reiser, O. (2016) The Modern Face of Synthetic Heterocyclic Chemistry. The Journal of Organic Chemistry, 81, 10109-10125. https://doi.org/10.1021/acs.joc.6b02034
|
[2]
|
Taylor, A.P., Robinson, R.P., Fobian, Y.M., Blakemore, D.C., Jones, L.H. and Fadeyi, O. (2016) Modern Advances in Heterocyclic Chemistry in Drug Discovery. Organic & Biomolecular Chemistry, 14, 6611-6637. https://doi.org/10.1039/C6OB00936K
|
[3]
|
Kerru, N., Gummidi, L., Maddila, S., Gangu, K.K. and Jonnalagadda, S.B. (2020) A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules, 25, 1909. https://doi.org/10.3390/molecules25081909
|
[4]
|
Hanson, S.M., Morlock, E.V., Satyshur, K.A. and Czajkowski, C. (2008) Structural Requirements for Eszopiclone and Zolpidem Binding to the GABAA Receptor Are Different. Journal of Medicinal Chemistry, 51, 7243-7252. https://doi.org/10.1021/jm800889m
|
[5]
|
Enguehard-Gueiffier, C. and Gueiffier, A. (2007) Recent Progress in the Pharmacology of Imidazo[1,2-a]pyridines. Mini-Reviews in Medicinal Chemistry, 7, 888-899. https://doi.org/10.2174/138955707781662645
|
[6]
|
Yan, R., Yan, H., Ma, C., et al. (2012) Cu(I)-Catalyzed Synthesis of Imidazo[1,2-a]pyridines from Aminopyridines and Nitroolefins Using Air as the Oxidant. Journal of Organic Chemistry, 77, 2024-2028. https://doi.org/10.1021/jo202447p
|
[7]
|
Stasyuk, A.J., Banasiewicz, M., Cyrański, M.K. and Gryko, D.T. (2012) Imidazo[1,2-a]pyridines Susceptible to Excited State Intramolecular Proton Transfer: One-Pot Synthesis via an Ortoleva-King Reaction. Journal of Organic Chemistry, 77, 5552-5558. https://doi.org/10.1021/jo300643w
|
[8]
|
Cai, Z., Wang, S. and Ji, S. (2013) Copper(I) Iodide/Boron Trifluoride Etherate-Cocatalyzed Aerobic Dehydrogenative Reactions Applied in the Synthesis of Substituted Heteroaromatic Imidazo[1,2-a]pyridines. Advanced Synthesis & Catalysis, 355, 2686-2692. https://doi.org/10.1002/adsc.201300333
|
[9]
|
Monir, K., Bagdi, A.K., Ghosh, M. and Hajra, A. (2014) Unprecedented Catalytic Activity of Fe(NO3)3·9H2O: Regioselective Synthesis of 2-Nitroimidazopyridines via Oxidative Amination. Organic Letters, 16, 4630-4633. https://doi.org/10.1021/ol502218u
|
[10]
|
Bagdi, A.K., Rahman, M., Santra, S., Majee, A. and Hajra, A. (2013) Copper-Catalyzed Synthesis of Imidazo[1,2-a]pyridines through Tandem Imine Formation-Oxidative Cyclization under Ambient Air: One-Step Synthesis of Zolimidine on a Gram-Scale. Advanced Synthesis & Catalysis, 355, 1741-1747. https://doi.org/10.1002/adsc.201300298
|
[11]
|
Hiebel, M., Fall, Y., Scherrmann, M. and Berteina-Raboin, S. (2014) Straightforward Synthesis of Various 2,3-Diarylimidazo[1,2-a]pyridines in PEG400 Medium through One-Pot Condensation and C-H Arylation. European Journal of Organic Chemistry, 2014, 4643-4650. https://doi.org/10.1002/ejoc.201402079
|
[12]
|
Pan, S., Wang, G., Schinazi, R.F. and Zhao, K. (1998) Synthesis of Novel Isoxazolinyl Substituted Imidazo[1,2-a]pyridine C-Nucleoside Analogs. Tetrahedron Letters, 39, 8191-8194. https://doi.org/10.1016/S0040-4039(98)01872-3
|
[13]
|
Lhassani, M., Chavignon, O., Chezal, J., et al. (1999) Synthesis and Antiviral Activity of Imidazo[1,2-a]pyridines. European Journal of Medicinal Chemistry, 34, 271-274. https://doi.org/10.1016/S0223-5234(99)80061-0
|
[14]
|
Gudmundsson, K.S., Drach, J.C. and Townsend, L.B. (1997) Synthesis of Imidazo[1,2-a]pyridine C-Nucleosides with an Unexpected Site of Ribosylation. The Journal of Organic Chemistry, 62, 3453-3459. https://doi.org/10.1021/jo9619342
|
[15]
|
Márton-Merész, M., Zára-Kaczián, E., Boros, S. and Mátyus, P. (1997) Cyclocondensation Reaction of a 1,5-diketone with 1,2-diamines. Journal of Heterocyclic Chemistry, 34, 1033-1036. https://doi.org/10.1002/jhet.5570340350
|
[16]
|
Shao, X., Zhang, W., Peng, Y., Li, Z., Tian, Z. and Qian, X. (2008) cis-Nitromethylene Neonicotinoids as New Nicotinic Family: Synthesis, Structural Diversity, and Insecticidal Evaluation of Hexahydroimidazo[1,2-alpha]pyridine. Bioorganic & Medicinal Chemistry Letters, 18, 6513-6516. https://doi.org/10.1016/j.bmcl.2008.10.048
|
[17]
|
Türkmen, H., Ceyhan, N., ülkü Karabay Yavasoglu, N., Ozdemir, G. and Cetinkaya, B. (2011) Synthesis and Antimicrobial Activities of Hexahydroimidazo[1,5-a]pyridinium Bromides with Varying Benzyl Substituents. European Journal of Medicinal Chemistry, 46, 2895-2900. https://doi.org/10.1016/j.ejmech.2011.04.012
|
[18]
|
Wang, R., Zhu, P., Lu, Y., Huang, F. and Hui, X. (2013) Bronsted Acid-Catalyzed Four-Component Cascade Reaction: Facile Synthesis of Hexahydroimidazo[1,2-a]pyridines. Advanced Synthesis & Catalysis, 355, 87-92. https://doi.org/10.1002/adsc.201200145
|
[19]
|
Jiang, J., Zhang, M., Wu, W., Lu, H., Shi, Y. and Li, J. (2018) L-Phenylalanine Triflate as Organocatalyst for Divergent Approaches to Trisubstituted Hexahydroimidazo[1,2-a]pyridine and 1,4-Diazepane Derivatives. Synlett, 29, 246-250. https://doi.org/10.1055/s-0036-1589115
|
[20]
|
Alvim, H.G.O., Correa, J.R., Assumpcao, J.A.F., da Silva, W.A., Rodrigues, M.O., de Macedo, J.L., Fioramonte, M., Gozzo, F.C., Gatto, C.C. and Neto, B.A.D. (2018) Heteropolyacid-Containing Ionic Liquid-Catalyzed Multicomponent Synthesis of Bridgehead Nitrogen Heterocycles: Mechanisms and Mitochondrial Staining. The Journal of Organic Chemistry, 83, 4044-4053. https://doi.org/10.1021/acs.joc.8b00472
|
[21]
|
Tan, H. and Wang, Y. (2020) Facile Synthesis of Novel Hexahydroimidazo[1,2-a]pyridine Derivatives by One-Pot, Multicomponent Reaction under Ambient Conditions. ACS Combinatorial Science, 22, 468-474. https://doi.org/10.1021/acscombsci.0c00105
|
[22]
|
https://pubchem.ncbi.nlm.nih.gov/compound/P-Toluenesulfonic-acid#section=Acute-Effects
|
[23]
|
Mohan, R. (2010) Green Bismuth. Nature Chemistry, 2, 336. https://doi.org/10.1038/nchem.609
|
[24]
|
Salvador, J.A.R., Silvestre, S.M., Pinto, R.M.A., Santos, R.C. and LeRoux, C. (2012) New Applications for Bismuth(III) Salts in Organic Synthesis: From Bulk Chemicals to Steroid and Terpene Chemistry. Topics in Current Chemistry, 311, 143-178. https://doi.org/10.1007/128_2011_170
|
[25]
|
Bothwell, J.M., Krabbe, S.W. and Mohan, R.S. (2011) Applications of Bismuth(III) Compounds in Organic Synthesis. Chemical Society Reviews, 40, 4649-4707. https://doi.org/10.1039/c0cs00206b
|
[26]
|
Ollevier, T. (2013) New Trends in Bismuth-Catalyzed Synthetic Transformations. Organic & Biomolecular Chemistry, 11, 2740-2755. https://doi.org/10.1039/c3ob26537d
|
[27]
|
https://pubchem.ncbi.nlm.nih.gov/compound/Bismuth-chloride-section=Acute-Effects
|
[28]
|
https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-chloride#section=Acute-Effects
|
[29]
|
Sunderhaus, J.D. and Martin, S.E. (2009) Applications of Multicomponent Reactions to the Synthesis of Diverse Heterocyclic Scaffolds. Chemistry: A European Journal, 15, 1300-1308. https://doi.org/10.1002/chem.200802140
|