[1]
|
Wells, A., Nuschke, A. and Yates, C. (2015) Skin Tissue Repair: Matrix Microenvironmental Influences. Matrix Biology, 49, 25-36.
https://www.ncbi.nlm.nih.gov/pubmed/11976459
https://doi.org/10.1016/j.matbio.2015.08.001
|
[2]
|
Grieb, G., Steffens, G., Pallua, N., Bernhagen, J. and Bucala, R. (2011) Circulating Fibrocytes-Biology and Mechanisms in Wound Healing and Scar Formation. International Review of Cell and Molecular Biology, 291, 1-19.
https://doi.org/10.1016/B978-0-12-386035-4.00001-X
|
[3]
|
Redd, M., Cooper, L., Wood, W., Stramer, B. and Martin, P.N. (2004) Wound Healing and Inflammation: Embryos Reveal the Way to Perfect Repair. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359, 777-784. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693361
https://doi.org/10.1098/rstb.2004.1466
|
[4]
|
Grose, R., Harris, B.S., Cooper, L., Topilko, P. and Martin, P. (2002) Immediate Early Genes krox-24 and krox-20 Are Rapidly Upregulated after Wounding in the Embryonic and Adult Mouse. Developmental Dynamics, 223, 371-378.
https://www.ncbi.nlm.nih.gov/pubmed/11891986
https://doi.org/10.1002/dvdy.10064
|
[5]
|
Shaw, T. and Martin, P. (2009) Epigenetic Reprogramming during Wound Healing: Loss of Polycomb-Mediated Silencing May Enable Upregulation of Repair Genes. EMBO Reports, 10, 881-886. https://www.ncbi.nlm.nih.gov/pubmed/19575012
https://doi.org/10.1038/embor.2009.102
|
[6]
|
Wong, V.W., Rustad, K.C., Akaishi, S., Sorkin, M., Glotzbach, J.P., Januszyk, M., Nelson, E.R., Levi, K., Paterno, J., Vial, I.N., Kuang, A.A., Longaker, M.T. and Gurtner, G.C. (2011) Focal Adhesion Kinase Links Mechanical Force to Skin Fibrosis via Inflammatory Signaling. Nature Medicine, 18, 148-152.
https://www.ncbi.nlm.nih.gov/pubmed/22157678
https://doi.org/10.1038/nm.2574
|
[7]
|
Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D. and Shimizu, H. (2008) Mesenchymal Stem Cells Are Recruited into Wounded Skin and Contribute to Wound Repair by Transdifferentiation into Multiple Skin Cell Type. The Journal of Immunology, 180, 2581-2587. https://doi.org/10.4049/jimmunol.180.4.2581
|
[8]
|
Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Müller, W., Roers, A. and Eming, S.A. (2010) Differential Roles of Macrophages in Diverse Phases of Skin Repair. The Journal of Immunology, 184, 3964-3977.
https://www.ncbi.nlm.nih.gov/pubmed/20176743
https://doi.org/10.4049/jimmunol.0903356
|
[9]
|
Martin, P. and Lebovich, J. (2005) Inflammatory Cells during Wound Repair: The Good, the Bad and the Ugly. Trends in Cell Biology, 15, 599-607.
https://pubmed.ncbi.nlm.nih.gov/16202600
https://doi.org/10.1016/j.tcb.2005.09.002
|
[10]
|
Willenborg, S., Eckes, B., Brinckmann, J., Krieg, T., Waisman, A., Hartmann, K., Roers, A. and Eming, S.A. (2014) Genetic Ablation of Mast Cells Redefines the Role of Mast Cells in Skin Wound Healing and Bleomycin-Induced Fibrosis. Journal of Investigative Dermatology, 134, 2005-2015.
https://www.ncbi.nlm.nih.gov/pubmed/24406680
https://doi.org/10.1038/jid.2014.12
|
[11]
|
Adzick, N.S., Harrison, M.R., Glick, P.L., Beckstead, J.H., Villa, R.L., Scheuenstuhl, H. and Goodson, W.H. (1985) Comparison of Foetal, New-Born, and Adult Wound Healing by Histologic, Enzyme-Histochemical, and Hydroxyproline Determinations. Journal of Pediatric Surgery, 20, 315-319.
https://www.ncbi.nlm.nih.gov/pubmed/4045654
https://doi.org/10.1016/S0022-3468(85)80210-4
|
[12]
|
Ferguson, M.W. and O’Kane, S. (2004) Scar-Free Healing: From Embryonic Mechanisms to Adult Therapeutic Intervention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359, 839-850.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693363
https://doi.org/10.1098/rstb.2004.1475
|
[13]
|
Brem, H., Stojadinovic, O., Diegelmann, R.F., Entero, H., Lee, B., Pastar, I., Golinko, M., Rosenberg, H. and Tomic-Canic, M. (2007) Molecular Markers in Patients with Chronic Wounds to Guide Surgical Debridement. Molecular Medicine, 13, 30-39.
https://www.ncbi.nlm.nih.gov/pubmed/17515955
https://doi.org/10.2119/2006-00054.Brem
|
[14]
|
Demidova-Rice, T., Hamblin, M. and Herman, I. (2012) Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Advances in Skin & Wound Care, 25, 304-314.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428147
https://doi.org/10.1097/01.ASW.0000416006.55218.d0
|
[15]
|
Shih, B. and Bayat, A. (2010) Genetics of Keloid Scarring. Archives of Dermatological Research, 302, 319-339. https://www.ncbi.nlm.nih.gov/pubmed/20130896
https://doi.org/10.1007/s00403-009-1014-y
|
[16]
|
Alster, T.S. and Tanzi, E.L. (2003) Hypertrophic Scars and Keloids. Etiology and Management. American Journal of Clinical Dermatology, 4, 235-243.
https://www.ncbi.nlm.nih.gov/pubmed/12680802
https://doi.org/10.2165/00128071-200304040-00003
|
[17]
|
Alexander, G., Marneros, J., Norris, E.C. and Olsen, B. (2001) Clinical Genetics of Familial Keloids. Arch Dermatologist, 137, 1429-1434.
https://doi.org/10.1001/archderm.137.11.1429
|
[18]
|
Moustafa, M.F., Abdel-Fattah, M.A. and Abdel-Fattah, D.C. (1975) Presumptive Evidence of the Effect of Pregnancy Estrogens on Keloid Growth. Case Report. Plastic and Reconstructive Surgery, 56, 450-453.
https://doi.org/10.1097/00006534-197510000-00019
|
[19]
|
Leszczynski, R., da Silva, C.A.P., Kudzynski, U. and da Silva, E.M.K. (2015) Laser Therapy for Treating Hypertrophic and Keloid Scars. Cochrane Systematic Review Intervention Protocol. https://doi.org/10.1002/14651858.CD011642
|
[20]
|
Gupta, S. and Sharma, V.K. (2011) Standard Guidelines of Care: Keloids and Hypertrophic Scars. Indian Journal of Dermatology, Venereology, and Leprology, 77, 94-100. https://doi.org/10.4103/0378-6323.74968
http://www.ijdvl.com/article.asp?issn=0378-6323;year=2011;volume=77;issue=1 ;spage=94;epage=100;aulast=Gupta
|
[21]
|
Juckett, G. and Hartman-Adams, H. (2009) Management of Keloids and Hypertrophic Scars. American Family Physician, 80, 253-260.
https://www.aafp.org/afp/2009/0801/p253.html
|
[22]
|
Trace, A.P., Enos, C.W., Mantel, A. and Harvey, V.M. (2016) Keloids and Hypertrophic Scars: A Spectrum of Clinical Challenges. American Journal of Clinical Dermatology, 17, 201-223. https://www.ncbi.nlm.nih.gov/pubmed/26894654
https://doi.org/10.1007/s40257-016-0175-7
|
[23]
|
Akaishi, S., Koike, S., Dohi, T., Kobe, K., Hyakusoku, H. and Ogawa, R. (2012) Nd:YAG Laser Treatment of Keloids and Hypertrophic Scars. Eplasty, 12, e1.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258100
|
[24]
|
Huang, L., Wong, Y.P., Cai, Y.J., et al. (2010) Low-Dose 5-Fluorouracil Induces Cell Cycle G2 Arrest Andapoptosis in Keloid Fibroblasts. British Journal of Dermatology, 163, 1181-1195. https://www.ncbi.nlm.nih.gov/pubmed/20633010
https://doi.org/10.1111/j.1365-2133.2010.09939.x
|
[25]
|
Gupta, S. and Kalra, A. (2002) Efficacy and Safety of Intralesional 5-Fluorouracil in the Treatment of Keloids. Dermatology, 204, 130-132.
https://www.ncbi.nlm.nih.gov/pubmed/11937738
https://doi.org/10.1159/000051830
|
[26]
|
Saha, A.K. and Mukhopadhyay, M. (2012) A Comparative Clinical Study on Role of 5-Flurouracil Versustriamcinolone in the Treatment of Keloids. Indian Journal of Surgery, 74, 326-329. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444598
https://doi.org/10.1007/s12262-011-0399-y
|
[27]
|
Kajagar, B.M., Godhi, A.S., Pandit, A. and Khatri, S. (2012) Efficacy of Low-Level Laser Therapy on Wound Healing in Patients with Chronic Diabetic Foot Ulcers—A Randomised Control Trial. Indian Journal of Surgery, 74, 359-363.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477409
https://doi.org/10.1007/s12262-011-0393-4
|
[28]
|
Beckerman, H., de Bie, R.A., Bouter, L.M., De Cuyper, H.J. and Oostendorp, R.A.B. (1992) The Efficacy of Laser Therapy for Musculoskeletal and Skin Disorders: A Criteria-Based Meta-Analysis of Randomized Clinical Trials. Physical Therapy, 72, 483-491. https://www.ncbi.nlm.nih.gov/pubmed/1409881
https://doi.org/10.1093/ptj/72.7.483
|
[29]
|
Nuccitelli, R. (1992) Endogenous Ionic Currents and CE Electric Fields in Multicellular Animal Tissues. Bioelectromagnetics, 1, 147-157.
https://doi.org/10.1002/bem.2250130714
|
[30]
|
Zhao, M., Bai, H., Wang, E., Forrester, J.V. and McCaig, C.D. (2004) Electrical Stimulation Directly Induces Pre-Angiogenic Responses in Vascular Endothelial Cells by Signalling through VEGF Receptors. Journal of Cell Science, 117, 397-405.
https://jcs.biologists.org/content/117/3/397.full
https://doi.org/10.1242/jcs.00868
|
[31]
|
Kanno, S., Oda, N., et al. (1999) Establishment of a Simple and Practical Procedure Applicable to Therapeutic Angiogenesis. Circulation, 99, 2682-2687.
https://doi.org/10.1161/01.CIR.99.20.2682
|
[32]
|
Linderman, J.R., Kloehn, M.R. and Greene, A.S. (2000) Development of an Implantable Muscle Stimulator: Measurement of Stimulated Angiogenesis and Post-Stimulus Vessel Regression. Microcirculation, 77, 119-128.
https://doi.org/10.1080/sj.mn.7300100
|
[33]
|
Coronel, R., Wilms-Schopman, F.J., Opthof, T., Van Cappele, F.J. and Jance, M.J. (1991) Injury Current and Gradients of Diastolic Stimulation Threshold, TQ Potential, and Extracellular Potassium Concentration during Acute Regional Ischemia in the Isolated Perfused Pig Heart. Circulation Research, 68, 1241-1249.
https://doi.org/10.1161/01.RES.68.5.1241
|
[34]
|
Cheng, N., Van Hoof, H., Bockx, E., Hoogmartens, M.J., Mulier, J.C., De Dijcker, F.J., Sansen, W.M. and De Loecker, W. (1982) The Effects of Electric Currents on ATP Generation, Protein Synthesis, and Membrane Transport of Rat Skin. Clinical Orthopaedics and Related Research, 171, 264-272.
https://www.ncbi.nlm.nih.gov/pubmed/7140077
https://doi.org/10.1097/00003086-198211000-00045
|
[35]
|
Todd, I., Clothier, R.H., Huggins, M.L., Patel, N., Searle, K.C., Jeyarajah, S., Pradel, L. and Lacey, K.L. (2001) Electrical Stimulation of Transforming Growth Factor-Beta 1 Secretion by Human Dermal Fibroblasts and the U937 Human Monocytic Cell Line. Alternatives to Laboratory Animals, 29, 693-701.
https://www.ncbi.nlm.nih.gov/pubmed/11709043
https://doi.org/10.1177/026119290102900611
|
[36]
|
Poltawski, L. and Watson, T. (2009) Bioelectricity and Microcurrent Therapy for Tissue Healing—A Narrative Review. Journal of Physical Therapy Reviews, 14, 104-114. https://doi.org/10.1179/174328809X405973
|
[37]
|
Wishing, P.G., Habrom, A.D., Zehnder, T.M., Friedli, S. and Blatti, M. (2013) Wireless Micro Current Stimulation—An Innovative Electrical Stimulation Method for the Treatment of Patients with Leg and Diabetic Foot Ulcers. International Wound Journal, 12, 693-698. https://doi.org/10.1111/iwj.12204
|
[38]
|
Lee, B.Y., Al-Waili, N., Stubbs, D., Wendell, K., Butler, G., Al-Waili, T. and Al-Waili, A. (2010) Ultra-Low Microcurrent in the Management of Diabetes Mellitus, Hypertension and Chronic Wounds: Report of Twelve Cases and Discussion of Mechanism of Action. International Journal of Medical Sciences, 7, 29-35.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792735
https://doi.org/10.7150/ijms.7.29
|
[39]
|
Goossens, V., De Vos, K., Vercammen, D., et al. (1999) Redox Regulation of TNF Signaling. Bio Factors, 10, 145-156. https://doi.org/10.1002/biof.5520100210
https://www.ncbi.nlm.nih.gov/pubmed/10609876
|
[40]
|
Kumar and Pandey, A.K. (2015) Free Radicals: Health Implications and Their Mitigation by Herbals. British Journal of Medicine and Medical Research, 7, 438-457.
https://www.academia.edu/15709907/Free_Radicals_Health_Implications_and_their_Mitigation_ by_Herbals
https://doi.org/10.9734/BJMMR/2015/16284
|
[41]
|
Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. and Santoro, A. (2018) Inflammaging: A New Immune-Metabolic Viewpoint for Age-Related Diseases. Nature Reviews Endocrinology, 14, 576-590.
https://www.nature.com/articles/s41574-018-0059-4#auth-1
https://doi.org/10.1038/s41574-018-0059-4
|
[42]
|
Oschman, J.L. (2005) Energy and the Healing Response. Journal of Bodywork and Movement Therapies, 9, 3-15. https://doi.org/10.1016/S1360-8592(03)00092-5
|
[43]
|
Ralston, W.P. (2005) Electron-Gated Ion Channels: With Amplification by NH3 Inversion Resonance. Institution of Engineering and Technology, Science, 190 p.
https://books.google.com.hk/books/about/Electron_Gated_Ion_Channels.html?id=5zaAkQhkZP0C&source=kp_cover&redir_esc=y
|
[44]
|
Ishida, Y., Agata, Y., Shibahara, K. and Honjo, T. (1992) Induced Expression of PD-1, a Novel Member of the Immunoglobulin Gene Superfamily, upon Programmed Cell Death. The EMBO Journal, 11, 3887-3895.
https://www.ncbi.nlm.nih.gov/pubmed/1396582
https://doi.org/10.1002/j.1460-2075.1992.tb05481.x
|
[45]
|
Leach, D.R., Krummel, M.F. and Allison, J.P. (1996) Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science, 271, 1734-1736.
https://www.ncbi.nlm.nih.gov/pubmed/8596936
https://doi.org/10.1126/science.271.5256.1734
|
[46]
|
Nishimura, H., Nose, M., Hiai, H., Minato, N. and Honjo, T. (1999) Development of Lupus-Like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity, 11, 141-151.
https://www.ncbi.nlm.nih.gov/pubmed/10485649
https://doi.org/10.1016/S1074-7613(00)80089-8
|
[47]
|
Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., Horton, H.F., Fouser, L., Carter, L., Ling, V., Bowman, M.R., Carreno, B.M., Collins, M., Wood, C.R. and Honjo, T. (2000) Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. Journal of Experimental Medicine, 192, 1027-1034. https://doi.org/10.1084/jem.192.7.1027
https://www.ncbi.nlm.nih.gov/pubmed/11015443
|
[48]
|
Hodi, F.S., Mihm, M.C., Soiffer, R.J., Haluska, F.G., Butler, M., Seiden, M.V., Davis, T., Henry-Spires, R., MacRae, S., Willman, A., Padera, R., Jaklitsch, M.T., Shankar, S., Chen, T.C., Korman, A., Allison, J.P. and Dranoff, G. (2003) Biologic Activity of Cytotoxic T Lymphocyte-Associated Antigen 4 Antibody Blockade in Previously Vaccinated Metastatic Melanoma and Ovarian Carcinoma Patients. Proceedings of the National Academy of Sciences of the United States of America, 100, 4712-4717.
https://www.ncbi.nlm.nih.gov/pubmed/12682289
https://doi.org/10.1073/pnas.0830997100
|
[49]
|
Iwai, Y., Terawaki, S. and Honjo, T. (2005) PD-1 Blockade Inhibits Hematogenous Spread of Poorly Immunogenic Tumor Cells by Enhanced Recruitment of Effector T Cells. International Immunology, 17, 133-144.
https://www.ncbi.nlm.nih.gov/pubmed/15611321
https://doi.org/10.1093/intimm/dxh194
|
[50]
|
Rothman, J.E., Schekman, R.W. and Südhof, T.C. (2013) Nobel Prize in Physiology or Medicine 2013 Machinery Regulating Vesicle Traffic, a Major Transport System in Our Cells. https://www.nobelprize.org/prizes/medicine/2013/summary
|
[51]
|
Novick, P. and Schekman, R. (1979) Secretion and Cell-Surface Growth Are Blocked in a Temperature-Sensitive Mutant of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 76, 1858-1862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383491
https://doi.org/10.1073/pnas.76.4.1858
|
[52]
|
Balch, W.E., Dunphy, W.G., Braell, W.A. and Rothman, J.E. (1984) Reconstitution of the Transport of Protein between Successive Compartments of the Golgi Measured by the Coupled Incorporation of N-Acetylglucosamine. Cell, 39, 405-416.
https://www.ncbi.nlm.nih.gov/pubmed/6498939
https://doi.org/10.1016/0092-8674(84)90019-9
|
[53]
|
Kaiser, C.A. and Schekman, R. (1990) Distinct Sets of SEC Genes Govern Transport Vesicle Formation and Fusion Early in the Secretory Pathway. Cell, 61, 723-733.
https://www.ncbi.nlm.nih.gov/pubmed/2188733
https://doi.org/10.1016/0092-8674(90)90483-U
|
[54]
|
Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R. and Südhof, T.C. (1990) Phospholipid Binding by a Synaptic Vesicle Protein Homologous to the Regulatory Region of Protein Kinase C. Nature, 345, 260-263.
https://www.ncbi.nlm.nih.gov/pubmed/2333096
https://doi.org/10.1038/345260a0
|
[55]
|
Sollner, T., Whiteheart, W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. and Rothman, J.E. (1993) SNAP Receptor Implicated in Vesicle Targeting and Fusion. Nature, 362, 318-324.
https://www.ncbi.nlm.nih.gov/pubmed/8455717
https://doi.org/10.1038/362318a0
|
[56]
|
Hata, Y., Slaughter, C.A. and Südhof, T.C. (1993) Synaptic Vesicle Fusion Complex Contains unc-18 Homo-logue Bound to Syntaxin. Nature, 366, 347-351.
https://www.ncbi.nlm.nih.gov/pubmed/8247129
https://doi.org/10.1038/366347a0
|
[57]
|
Araque, A. and Navarrete, M. (2010) Glial Cells in Neuronal Network Function. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 2375-2381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949
https://doi.org/10.1098/rstb.2009.0313
|
[58]
|
Chaban, V.V., Cho, T., Reid, C.B. and Norris, K.C. (2013) Physically Disconnected Non-Diffusible Cell-to-Cell Communication between Neuroblastoma SH-SY5Y and DRG Primary Sensory Neurons. American Journal of Translational Research, 5, 69-79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560476
|
[59]
|
Pastar, I., Stojadinovic, O., Krzyzanowska, A., Barrientos, S., Stuelten, C., Zimmerman, K., Blumenberg, M., Brem, H. and Tomic-Canic, M. (2010) Attenuation of the Transforming Growth Factor Beta-Signalling Pathway in Chronic Venous Ulcers. Molecular Medicine, 16, 92-101.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804290
https://doi.org/10.2119/molmed.2009.00149
|
[60]
|
Naghibi, M., Smith, R.P., Baltch, A.L., Gates, S.A., Wu, D.H., Hammer, M.C. and Michelsen, P.B. (1987) The Effect of Diabetes Mellitus on Chemotactic and Bactericidal Activity of Human Polymorphonuclear Leukocytes. Diabetes Research and Clinical Practice, 4, 27-35. https://www.ncbi.nlm.nih.gov/pubmed/3121272
https://doi.org/10.1016/S0168-8227(87)80030-X
|
[61]
|
Apelqvist, J., Larsson, J. and Agardh, C.D. (1992) Medical Risk Factors in Diabetic Patients with Foot Ulcers and Severe Peripheral Vascular Disease and Their Influence on Outcome. Journal of Diabetic Complications, 6, 167-174.
https://europepmc.org/article/med/1472742
https://doi.org/10.1016/1056-8727(92)90032-G
|
[62]
|
Ferrucci, L. and Fabbri, E. (2018) Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nature Reviews Cardiology, 15, 505-522.
https://www.nature.com/articles/s41569-018-0064-2 https://doi.org/10.1038/s41569-018-0064-2
|