nnabinoid System by Specific Fractions of Nutmeg Total Extract. Pharmaceutical Biology, 54, 2933-2938.
https://doi.org/10.1080/13880209.2016.1194864 [19] Zygmunt, P.M., Ermund, A., Movahed, P., Andersson, D.A., Simonsen, C., Jonsson, B.A., Blomgren, A., Birnir, B., Bevan, S., Eschalier, A., Mallet, C., Gomis, A. and Hogestatt, E.D. (2013) Monoacylglycerols Activate TRPV1: A Link between Phospholipase C and TRPV1. PLoS ONE 8, e81618.
https://doi.org/10.1371/journal.pone.0081618 [20] Piomelli, D. and Sasso, O. (2014) Peripheral Gating of Pain Signals by Endogenous Analgesic Lipids. Nature Neuroscience, 17, 164-174.
https://doi.org/10.1038/nn.3612 [21] Sharir, H. and Abood, M.E. (2010) Pharmacological Characterization of GPR55, a Putative Cannabinoid Receptor. Pharmacology & Therapeutics, 126, 301-313.
https://doi.org/10.1016/j.pharmthera.2010.02.004 [22] Habib, A.M., Okorokov, A.L., Hill, M.N., Bras, J.T., Lee, M.C., Li, S., Gossage, S.J., van Drimmelen, M., Morena, M., Houlden, H., Ramirez, J.D., Bennett, D.L.H., Srivastava, D. and Cox, J.J. (2019) Microdeletion in a FAAH Pseudogene Identified in a Patient with High Anandamide Concentrations and Pain Insensitivity. British Journal of Anaesthesia, 123, e249-e253.
https://doi.org/10.1016/j.bja.2019.02.019 [23] Kim, M.J., Tanioka, M., Um, S.W., Hong, S.K. and Lee, B.H. (2018) Analgesic Effects of FAAH Inhibitor in the Insular Cortex of Nerve-Injured Rats. Molecular Pain, 14, 1-26.
https://doi.org/10.1177/1744806918814345 [24] Ignatowska-Jankowska, B., Wilkerson, J.L., Mustafa, M., Abdullah, R., Niphakis, M., Wiley, J.L., Cravatt, B.F. and Lichtman, A.H. (2015) Selective Monoacylglycerol Lipase Inhibitors: Antinociceptive versus Cannabimimetic Effects in Mice. The Journal of Pharmacology and Experimental Therapeutics, 353, 424-432.
https://doi.org/10.1124/jpet.114.222315 [25] Adamson Barnes, N.S., Mitchell, V.A., Kazantzis, N.P. and Vaughan, C.W. (2016) Actions of the Dual FAAH/MAGL Inhibitor JZL195 in a Murine Neuropathic Pain Model. British Journal of Pharmacology, 173, 77-87.
https://doi.org/10.1111/bph.13337 [26] Wang, M.Y., Lutfiyya, M.N., Weidenbacher-Hoper, V., Peng, L., Lipsky, M.S. and Anderson, G. (2011) Morinda citrifolia L. (Noni) Improves the Quality of Life in Adults with Osteoarthritis. Functional Foods in Health & Disease, 1, 75-90.
https://doi.org/10.31989/ffhd.v1i2.138 [27] Lutz, B., Marsicano, G., Maldonado, R. and Hillard, C.J. (2015) The Endocannabinoid System in Guarding against Fear, Anxiety and Stress. Nature Reviews Neuroscience, 16, 705-718.
https://doi.org/10.1038/nrn4036 [28] Daviu, N., Bruchas, M.R., Moghaddam, B., Sandi, C. and Beyeler, A. (2019) Neurobiological Links between Stress and Anxiety. Neurobiology of Stress, 11, Article ID: 100191.
https://doi.org/10.1016/j.ynstr.2019.100191 [29] Katona, I., Rancz, E.A., Acsady, L., Ledent, C., Mackie, K., Hajos, N. and Freund, T.F. (2001) Distribution of CB1 Cannabinoid Receptors in the Amygdala and Their Role in the Control of GABAergic Transmission. Journal of Neuroscience, 21, 9506-9518.
https://doi.org/10.1523/JNEUROSCI.21-23-09506.2001 [30] Chhatwal, J.P. and Ressler, K.J. (2007) Modulation of Fear and Anxiety by the Endogenous Cannabinoid System. CNS Spectrums, 12, 211-220.
https://doi.org/10.1017/S1092852900020939 [31] Moreira, F.A., Kaiser, N., Monory, K. and Lutz, B. (2008) Reduced Anxiety-Like Behaviour Induced by Genetic and Pharmacological Inhibition of the Endocannabinoid-Degrading Enzyme Fatty Acid Amide Hydrolase (FAAH) Is Mediated by CB1 Receptors. Neuropharmacology, 54, 141-150.
https://doi.org/10.1016/j.neuropharm.2007.07.005 [32] Dincheva, I., Drysdale, A.T., Hartley, C.A., Johnson, D.C., Jing, D., King, E.C., Ra, S., Gray, J.M., Yang, R., DeGruccio, A.M., Huang, C., Cravatt, B.F., Glatt, C.E., Hill, M.N., Casey, B.J. and Lee, F.S. (2015) FAAH Genetic Variation Enhances Fronto-Amygdala Function in Mouse and Human. Nature Communications, 6, 6395.
https://doi.org/10.1038/ncomms7395 [33] Jenniches, I., Ternes, S., Albayram, O., Otte, D.M., Bach, K., Bindila, L., Michel, K., Lutz, B., Bilkei-Gorzo, A. and Zimmer, A. (2016) Anxiety, Stress, and Fear Response in Mice with Reduced Endocannabinoid Levels. Biological Psychiatry, 79, 858-868.
https://doi.org/10.1016/j.biopsych.2015.03.033 [34] Cavener, V.S., Gaulden, A., Pennipede, D., Jagasia, P., Uddin, J., Marnett, L.J. and Patel, S. (2018) Inhibition of Diacylglycerol Lipase Impairs Fear Extinction in Mice. Frontiers in Neuroscience, 12, 479.
https://doi.org/10.3389/fnins.2018.00479 [35] Muto, J., Hosung, L., Uwaya, A., Isami, F., Ohno, M. and Mikami, T. (2010) Morinda Citrifolia Fruit Reduces Stress-Induced Impairment of Cognitive Function Accompanied by Vasculature Improvement in Mice. Physiology and Behavior, 101, 211-217.
https://doi.org/10.1016/j.physbeh.2010.04.014 [36] Hill, M.N., Kumar, S.A., Filipski, S.B., Iverson, M., Stuhr, K.L., Keith, J.M., Cravatt, B.F., Hillard, C.J., Chattarji, S. and McEwen, B.S. (2013) Disruption of Fatty Acid Amide Hydrolase Activity Prevents the Effects of Chronic Stress on Anxiety and Amygdalar Microstructure. Molecular Psychiatry, 18, 1125-1135.
https://doi.org/10.1038/mp.2012.90 [37] Beladjila, K.A., Berrehal, D., De Tommasi, N., Granchi, C., Bononi, G., Braca, A. and De Leo, M. (2018) New Phenylethanoid Glycosides from Cistanche phelypaea and Their Activity as Inhibitors of Monoacylglycerol Lipase (MAGL). Planta Medica, 84, 710-715.
https://doi.org/10.1055/s-0044-100187 [38] Zalesak, F., Denis Bon, D.J. and Pospisil, J. (2019) Lignans and Neolignans: Plant Secondary Metabolites as a Reservoir of Biologically Active Substances. Pharmacological Research 146, Article ID: 104284.
https://doi.org/10.1016/j.phrs.2019.104284 [39] De La Cruz-Sánchez, N.G., Gómez-Rivera, A., Alvarez-Fitz, P., Ventura-Zapata, E., Pérez-García, M.D., Avilés-Flores, M., Gutiérrez-Román, A.S. and González-Cortazar, M. (2019) Antibacterial Activity of Morinda citrifolia Linneo Seeds against Methicillin-Resistant Staphylococcus spp. Microbial Pathogenesis, 128, 347-353.
https://doi.org/10.1016/j.micpath.2019.01.030 [40] Shin, Y., Jang, E.J., Park, H.J., Hong, J.Y., Kang, S.S. and Lee, S.K. (2016) Suppression of Melanin Synthesis by Americanin A in Melan: A Cells via Regulation of Microphthalmia-Associated Transcription Factor. Experimental Dermatology, 25, 646-647.
https://doi.org/10.1111/exd.13013 [41] Jung, C., Hong, J.Y., Bae, S.Y., Kang, S.S., Park, H.J. and Lee, S.K. (2015) Antitumor Activity of Americanin A Isolated from the Seeds of Phytolacca americana by Regulating the ATM/ATR Signaling Pathway and the Skp2-p27 Axis in Human Colon Cancer Cells. Journal of Natural Products, 78, 2983-2993.
https://doi.org/10.1021/acs.jnatprod.5b00743 [42] Masuda, M., Murata, K., Naruto, S., Uwaya, A., Isami, F. and Matsuda, H. (2012) Matrix Metalloproteinase-1 Inhibitory Activities of Morinda citrifolia Seed Extract and Its Constituents in UVA-Irradiated Human Dermal Fibroblasts. Biological and Pharmaceutical Bulletin, 35, 210-215.
https://doi.org/10.1248/bpb.35.210 [43] Masuda, M., Itoh, K., Murata, K., Naruto, S., Uwaya, A., Isami, F. and Matsuda, H. (2012) Inhibitory Effects of Morinda citrifolia Extract and Its Constituents on Melanogenesis in Murine B16 Melanoma Cells. Biological and Pharmaceutical Bulletin, 35, 78-83.
https://doi.org/10.1248/bpb.35.78 [44] Masuda, M., Murata, K., Fukuhama, A., Naruto, S., Fujita, T., Uwaya, A., Isami, F. and Matsuda, H. (2009) Inhibitory Effects of Constituents of Morinda citrifolia Seeds on Elastase and Tyrosinase. Journal of Natural Medicines, 63, 267-273.
https://doi.org/10.1007/s11418-009-0328-6 [45] Su, B.N., Pawlus, A.D., Jung, H.A., Keller, W.J., McLaughlin, J.L. and Kinghorn, A.D. (2005) Chemical Constituents of the Fruits of Morinda citrifolia (Noni) and Their Antioxidant Activity. Journal of Natural Products, 68, 592-595.
https://doi.org/10.1021/np0495985 [46] Kamiya, Tanaka, Y., Endang, H., Umar, M. and Satake, T. (2004) Chemical Constituents of Morinda citrifolia Fruits Inhibit Copper-Induced Low-Density Lipoprotein Oxidation. Journal of Agricultural and Food Chemistry, 52, 5843-5848.
https://doi.org/10.1021/jf040114k [47] Fukuyama, Y., Hasegawa, T., Toda, M., Kodama, M. and Okazaki, H. (1992) Structures of Americanol A and Isoamericanol A Having a Neurotrophic Property from the Seeds of Phytolacca americana. Chemical and Pharmaceutical Bulletin, 40, 252-254.

comments powered by Disqus
JBM Subscription
E-Mail Alert
JBM Most popular papers
Publication Ethics & OA Statement
JBM News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.