Suzuki-Type Fixed Point Theorem in b2-Metric Spaces

DOI: 10.4236/oalib.1105974   PDF   HTML     168 Downloads   274 Views
In this paper, we establish a fixed point theorem for two mappings under a contraction condition in b2-metric space, and this theorem is related to a Suzuki-type of contraction.

Share and Cite:

Wu, C. , Cui, J. and Zhong, L. (2019) Suzuki-Type Fixed Point Theorem in b2-Metric Spaces. Open Access Library Journal, 6, 1-9. doi: 10.4236/oalib.1105974. 1. Introduction

Banach  proved a principle, and this famous Banach contraction principle has many generalizations, see  - , and in 2008, Suzuki  established one of those generalizations, and this generalization is called Suzuki principle.

The aim of this paper is to prove a fixed point result generalized from the above mentioned principle in b2-metric space .

2. Preliminaries

Before giving our results, these definitions and results as follows will be needed to present.

Definition 2.1  Let X be a nonempty set, $s\ge 1$ be a real number and let d: $X×X×X\to R$ be a map satisfying the following conditions:

1) For every pair of distinct points $x,y\in X$, there exists a point $z\in X$ such that $d\left(x,y,z\right)\ne 0$.

2) If at least two of three points $x,y,z$ are the same, then $d\left(x,y,z\right)=0$,

3) The symmetry:

$d\left(x,y,z\right)=d\left(x,z,y\right)=d\left(y,x,z\right)=d\left(y,z,x\right)=d\left(z,x,y\right)=d\left(z,x,y\right)$ for all $x,y,z\in X$.

1) The rectangle inequality:

$d\left(x,y,z\right)\le s\left[d\left(x,y,a\right)+d\left(y,z,a\right)+d\left(z,x,a\right)\right]$, for all $x,y,z,a\in X$.

Then d is called a b2 metric on X and $\left(X,d\right)$ is called a b2 metric space with parameter s. Obviously, for $s=1$, b2 metric reduces to 2-metric.

Definition 2.2  Let $\left\{{x}_{n}\right\}$ be a sequence in a b2 metric space $\left(X,d\right)$.

1) A sequence $\left\{{x}_{n}\right\}$ is said to be b2-convergent to $x\in X$, written as ${\mathrm{lim}}_{n\to \infty }{x}_{n}=x$, if all $a\in X$ ${\mathrm{lim}}_{n\to \infty }d\left({x}_{n},x,a\right)=0$.

2) $\left\{{x}_{n}\right\}$ is Cauchy sequence if and only if $d\left({x}_{n},{x}_{m},a\right)\to 0$, when $n,m\to \infty$. for all $a\in X$.

3) $\left(X,d\right)$ is said to be complete if every b2-Cauchy sequence is a b2-convergent sequence.

Definition 2.3  Let $\left(X,d\right)$ and $\left({X}^{\prime },{d}^{\prime }\right)$ be two b2-metric spaces and let $f:X\to {X}^{\prime }$ be a mapping. Then f is said to be b2-continuous, at a point $z\in X$ if for a given $\epsilon >0$, there exists $\delta >0$ such that $x\in X$ and $d\left(z,x,a\right)<\delta$ for all $a\in X$ imply that ${d}^{\prime }\left(fz,fx,a\right)<\epsilon$. The mapping f is b2-continuous on X if it is b2-continuous at all $z\in X$.

Definition 2.4  Let $\left(X,d\right)$ and $\left({X}^{\prime },{d}^{\prime }\right)$ be two b2-metric spaces. Then a mapping $f:X\to {X}^{\prime }$ is b2-continuous at a point $x\in {X}^{\prime }$ if and only if it is b2-sequentially continuous at x; that is, whenever $\left\{{x}_{n}\right\}$ is b2-convergent to x, $\left\{f{x}_{n}\right\}$ is b2-convergent to $f\left(x\right)$.

Lemma 2.5  Let $\left(X,d\right)$ be a b2-metric space and suppose that $\left\{{x}_{n}\right\}$ and $\left\{{y}_{n}\right\}$ are b2-convergent to x and y, respectively. Then we have

$\frac{1}{{s}^{2}}d\left(x,y,a\right)\le \underset{n\to \infty }{\mathrm{lim}}\mathrm{inf}d\left({x}_{n},{y}_{n},a\right)\le \underset{n\to \infty }{\mathrm{lim}}\mathrm{sup}d\left({x}_{n},{y}_{n},a\right)\le {s}^{2}d\left(x,y,a\right)$, for all a in X. In particular, if ${y}_{n}=y$ is a constant, then

$\frac{1}{s}d\left(x,y,a\right)\le \underset{n\to \infty }{\mathrm{lim}}\mathrm{inf}d\left({x}_{n},y,a\right)\le \underset{n\to \infty }{\mathrm{lim}}\mathrm{sup}d\left({x}_{n},y,a\right)\le sd\left(x,y,a\right)$, for all a in X.

Lemma 2.6  Let $\left(X,d\right)$ be a b2 metric space with $s\ge 1$ and let ${\left\{{x}_{n}\right\}}_{n=0}^{\infty }$ be a sequence in X such that

$d\left({x}_{n},{x}_{n+1},a\right)\le \lambda d\left({x}_{n-1},{x}_{n},a\right)$, (2.1)

for all $n\in N$ and all $a\in X$, where $\lambda \in \left[0,\frac{1}{s}\right)$. Then $\left\{{x}_{n}\right\}$ is a b2-Cauchy sequence in $\left(X,d\right)$.

3. Main Results

Theorem 3.1. Let $\left(X,d\right)$ be a complete b2-metric space. Let $f,g:X\to X$ be two self-maps and $\varphi :\left[0,1\right)\to \left(\frac{1}{2},1\right]$ be defined as follows

$\varphi \left(\rho \right)=\left\{\begin{array}{l}1,0\le \rho \le \frac{\sqrt{5}-1}{2}\\ \frac{1-\rho }{{\rho }^{2}},\frac{\sqrt{5}-1}{2}\le \rho \le \frac{1}{\sqrt{2}}\\ \frac{1}{1+\rho },\frac{1}{\sqrt{2}}\le \rho <1\end{array}$ (3.1)

Assume there exists $\rho \in \left[0,1\right)$ such that for every $x,y\in X$, the following condition is satisfied

$\begin{array}{l}\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left(x,fx,a\right),d\left(fx,fy,a\right)\right\}\le d\left(x,y,a\right)\\ ⇒\mathrm{max}\left\{d\left(gx,gy,a\right),d\left(gx,fy,a\right),d\left(fx,fy,a\right),d\left(gy,fx,a\right)\right\}\le \frac{\rho }{{s}^{2}}d\left(x,y,a\right).\end{array}$ (3.2)

Then $f,g$ have a unique common fixed point $z\in X$.

Proof in (3.2), we take $y=fx$

$\begin{array}{l}\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left(x,fx,a\right),d\left(x,gx,a\right)\right\}\le d\left(x,gx,a\right)\\ ⇒\mathrm{max}\left\{d\left(gx,{g}^{2}x,a\right),d\left(gx,fgx,a\right),d\left(fx,fgx,a\right),d\left({g}^{2}x,fx,a\right)\right\}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\le \frac{\rho }{{s}^{2}}d\left(x,gx,a\right),\end{array}$ for $x\in X$.(3.3)

therefore,

$d\left(gx,fgx,a\right)\le \frac{\rho }{{s}^{2}}d\left(x,gx,a\right).$ (3.4)

Now we take $y=fx$ in (3.2)

$\begin{array}{l}\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left(x,fx,a\right),d\left(x,gy,a\right)\right\}\le d\left(x,fy,a\right)\\ ⇒\mathrm{max}\left\{d\left(gx,gfy,a\right),d\left(gx,{f}^{2}y,a\right),d\left(fx,{f}^{2}x,a\right),d\left(gfx,fx,a\right)\right\}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\le \frac{\rho }{{s}^{2}}d\left(x,fx,a\right),\end{array}$ for all $x\in X$.(3.5)

therefore,

$d\left(fx,{f}^{2}x,a\right)\le \frac{\rho }{{s}^{2}}d\left(x,fx,a\right),$ (3.6)

and

$d\left(gfx,fx,a\right)\le \frac{\rho }{{s}^{2}}d\left(x,fx,a\right).$ (3.7)

Given an arbitrary point ${x}_{0}$ in X thenby ${x}_{2n+1}=g{x}_{2n}$ and ${x}_{2n+1}=f{x}_{2n+1}$ we construct a sequence $\left\{{x}_{n}\right\}$, for $n\in N$.

From (3.4), we get

$d\left({x}_{2n+1},{x}_{2n+2},a\right)=d\left(g{x}_{2n},fg{x}_{2n},a\right)\le \frac{\rho }{{s}^{2}}d\left({x}_{2n},g{x}_{2n},a\right)=\frac{\rho }{{s}^{2}}d\left({x}_{2n},{x}_{2n+1},a\right).$ (3.8)

From (3.7) and (3.8) we get

$d\left({x}_{2n+1},{x}_{2n},a\right)=d\left(gf{x}_{2n-1},f{x}_{2n-1},a\right)\le \frac{\rho }{{s}^{2}}d\left({x}_{2n},f{x}_{2n-1},a\right)=\frac{\rho }{{s}^{2}}d\left({x}_{2n-1},{x}_{2n},a\right)$,

that is,

$d\left({x}_{n+1},{x}_{n},a\right)\le \frac{\rho }{{s}^{2}}d\left({x}_{n},{x}_{n-1},a\right)$, since $\frac{\rho }{{s}^{2}}\in \left[0,1\right)$, by Lemma 2.6, we get $\left\{{x}_{n}\right\}$ is a Cauchy sequence.

Since X is complete, there exists z in X, such that $\underset{n\to \infty }{\mathrm{lim}}{x}_{n}=z$, that is $\underset{n\to \infty }{\mathrm{lim}}g{x}_{2n}=\underset{n\to \infty }{\mathrm{lim}}{x}_{2n+1}=z$, and $\underset{n\to \infty }{\mathrm{lim}}f{x}_{2n+1}=\underset{n\to \infty }{\mathrm{lim}}{x}_{2n+2}=z$.

Now let us give that

$d\left(fx,z,a\right)\le \rho d\left(x,z,a\right)$, for every $x\ne z$. For $\left\{d\left({x}_{2n},g{x}_{2n},a\right)\right\}$ is convergent to 0, and by Lemma 2.5, we get

$\frac{1}{s}d\left(x,z,a\right)\le \underset{n\to \infty }{\mathrm{lim}}\mathrm{sup}d\left({x}_{2n},x,a\right)$, thus we have $\underset{n\to \infty }{\mathrm{lim}}\mathrm{sup}d\left({x}_{2n},x,a\right)>0$, thus from the above relation, there exists a point ${x}_{2{n}_{k}}$ in X such that

$\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left({x}_{2{n}_{k}},g{x}_{2{n}_{k}},a\right),d\left({x}_{2{n}_{k}},f{x}_{2{n}_{k}},a\right)\right\}\le d\left({x}_{2{n}_{k}},x,a\right).$

For such ${x}_{2{n}_{k}}$, (3.2) implies that

$\begin{array}{l}d\left(g{x}_{2{n}_{k}},fx,a\right)\\ \le \mathrm{max}\left\{d\left(g{x}_{2{n}_{k}},gx,a\right),d\left(g{x}_{2{n}_{k}},fx,a\right),d\left(f{x}_{2{n}_{k}},fx,a\right),d\left(gx,f{x}_{2{n}_{k}},a\right)\right\}\\ \le \frac{\rho }{{s}_{2}}d\left({x}_{2{n}_{k}},x,a\right),\end{array}$

therefore by Lemma 3.5,

$\frac{1}{s}d\left(fx,z,a\right)\le \underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}d\left(g{x}_{2{n}_{k}},fx,a\right)\le \frac{\rho }{{s}^{2}}\underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}d\left({x}_{2{n}_{k}},x,a\right)\le \frac{\rho }{s}d\left(x,z,a\right),$

therefore we get

$d\left(fx,z,a\right)\le \rho d\left(x,z,a\right)$, for each $x\ne z$. (3.9)

Now we show that for each $n\in N$,

$d\left({f}^{n}z,z,a\right)\le d\left(fz,z,a\right),$ (3.10)

It is obvious that the above inequality is true for $n=1$, assume that the relation holds for some $m\in N$. We get (3.10) is true when we have ${f}^{m}z=fz$ if ${f}^{m}z=z$, then if ${f}^{m}z\ne z$, we get the following relation from (3.9) and induction hypothesis, and that is

$\begin{array}{c}d\left(z,{f}^{m+1}z,a\right)\le \rho d\left(z,{f}^{m}z,a\right)\le {\rho }^{2}d\left(z,{f}^{m-1}z,a\right)\le \cdots \le {\rho }^{m+1}d\left(z,fz,a\right)\\ \le \rho d\left(fz,z,a\right)\le d\left(fz,z,a\right),\end{array}$

then (3.10) is proved.

Now we consider the following two possible cases in order to prove that f has a fixed point z in X, and that is $fz=z$.

Case 1 $0\le \rho <\frac{1}{\sqrt{2}}$, therefore, $\varphi \left(\rho \right)\le \frac{1-\rho }{{\rho }^{2}}$. First, we prove the following relation

$d\left({f}^{n}z,fz,a\right)\le \frac{\rho }{s}d\left(fz,z,a\right)$, for $n\in N$. (3.11)

When $n=1$ it is obvious, and it follows from (3.6) when $n=2$, from (3.10) and take $a=fz$ we have

$d\left({f}^{n}z,z,fz\right)\le d\left(fz,z,fz\right)=0$, then we get $d\left({f}^{n}z,fz,z\right)=0$.

Now suppose that (3.11) holds for some $n>2$,

$\begin{array}{c}d\left(fz,z,a\right)\le s\left(d\left(z,{f}^{n}z,a\right)+d\left({f}^{n}z,fz,a\right)+d\left({f}^{n}z,fz,z\right)\right)\\ \le sd\left(z,{f}^{n}z,a\right)+sd\left(z,fz,a\right),\end{array}$

Therefore, we get

$\left(1-\rho \right)d\left(z,fz,a\right)\le sd\left(z,{f}^{n}z,a\right)$, that is $d\left(z,fz,a\right)\le \frac{s}{1-\rho }sd\left(z,{f}^{n}z,a\right)$, (3.11.1)

then by taking $x={f}^{n-1}z$ in (3.6)

$d\left({f}^{n}z,{f}^{n+1}z,a\right)\le \frac{\rho }{{s}^{2}}d\left({f}^{n-1}z,{f}^{n}z,a\right)\le \cdots \le \frac{{\rho }^{n}}{{s}^{2n}}d\left(z,fz,a\right)$, (3.11.2)

using the above two relations, (3.11.1) and (3.11.2) we have

$\begin{array}{l}\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left(g{f}^{n}z,{f}^{n}z,a\right),d\left({f}^{n}z,{f}^{n+1}z,a\right)\right\}\\ \le \frac{1-\rho }{s{\rho }^{2}}d\left({f}^{n}z,{f}^{n+1}z,a\right)\le \frac{1-\rho }{s{\rho }^{n}}d\left({f}^{n}z,{f}^{n+1}z,a\right)\\ \le \frac{1-\rho }{s{\rho }^{n}}\cdot \frac{{\rho }^{n}}{{s}^{2n}}d\left(z,fz,a\right)=\frac{1-\rho }{{s}^{2n+1}}d\left(z,fz,a\right)\\ \le \frac{1-\rho }{{s}^{2n+1}}\cdot \frac{s}{1-\rho }d\left(z,{f}^{n}z,a\right)\le \frac{1}{{s}^{2n}}d\left(z,{f}^{n}z,a\right)\le d\left(z,{f}^{n}z,a\right).\end{array}$

From (3.2) and (3.10) with $x={f}^{n}z$ and $y=z$, we have

$\begin{array}{l}\mathrm{max}\left\{d\left(g{f}^{n}z,gz,a\right),d\left(g{f}^{n}z,fz,a\right),d\left({f}^{n+1}z,fz,a\right),d\left(gz,{f}^{n+1}z,a\right)\right\}\\ \le \frac{\rho }{{s}^{2}}d\left(z,{f}^{n}z,a\right)\le \frac{\rho }{{s}^{2}}d\left(z,fz,a\right)\le \frac{\rho }{s}d\left(z,fz,a\right).\end{array}$

Therefore,

$d\left({f}^{n+1}z,fz,a\right)\le \frac{\rho }{s}d\left(fz,z,a\right).$ (3.12)

So by induction we prove the relation of (3.11).

Now (3.11) and $fz\ne z$ show that for every $n\in N$ ${f}^{n}z\ne z$, thus, (3.9) shows that

$d\left(z,{f}^{n+1}z,a\right)\le \rho d\left(z,{f}^{n}z,a\right)\le {\rho }^{2}d\left(z,{f}^{n-1}z,a\right)\le \cdots \le {\rho }^{n}d\left(z,fz,a\right).$

Therefore $\underset{n\to \infty }{\mathrm{lim}}d\left(z,{f}^{n+1}z,a\right)=0$. Furthermore by using Lemma 2.5, we get

$\frac{1}{s}d\left(z,\underset{n\to \infty }{\mathrm{lim}\mathrm{inf}}{f}^{n+1}z,a\right)\le \underset{n\to \infty }{\mathrm{lim}\mathrm{inf}}d\left(z,{f}^{n+1}z,a\right)=0,$

so

$d\left(z,\underset{n\to \infty }{\mathrm{lim}\mathrm{inf}}{f}^{n+1}z,a\right)=0.$

In the same way,

$d\left(z,\underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}{f}^{n+1}z,a\right)=0$, thus we have $d\left(z,\underset{n\to \infty }{\mathrm{lim}}{f}^{n+1}z,a\right)=0$, that is ${f}^{n+1}z\to z$, and by using Lemma 2.5 in (3.12), we get

$\frac{1}{s}d\left(z,fz,a\right)\le \underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}d\left({f}^{n+1}z,fz,a\right)\le \frac{\rho }{s}d\left(z,fz,a\right)$, which claims that $d\left(z,fz,a\right)=0$, and that is a contraction.

Case 2. $\frac{1}{\sqrt{2}}\le \rho <1$, and that is when $\varphi \left(\rho \right)=\frac{1}{1+\rho }$. We now prove that we can find a subsequence $\left\{{x}_{{n}_{k}}\right\}$ of $\left\{{x}_{n}\right\}$ such that

$\frac{1}{s\left(1+\rho \right)}\mathrm{min}\left\{d\left({x}_{{n}_{k}},g{x}_{{n}_{k}},a\right),d\left({x}_{{n}_{k}},f{x}_{{n}_{k}},a\right)\right\}\le d\left({x}_{{n}_{k}},z,a\right)$, for $k\in N$. (3.13)

The contraries of the above relation are as follows

$\frac{1}{s\left(1+\rho \right)}d\left({x}_{n},f{x}_{n},a\right)\ge \frac{1}{s\left(1+\rho \right)}\mathrm{min}\left\{d\left({x}_{n},g{x}_{n},a\right),d\left({x}_{n},f{x}_{n},a\right)\right\}>d\left({x}_{n},z,a\right),$

and

$\frac{1}{s\left(1+\rho \right)}d\left({x}_{n},f{x}_{n},a\right)\ge \frac{1}{s\left(1+\rho \right)}\mathrm{min}\left\{d\left({x}_{n},g{x}_{n},a\right),d\left({x}_{n},f{x}_{n},a\right)\right\}>d\left({x}_{n},z,a\right),$

for $n\in N$. If n is even we have

$\begin{array}{l}\frac{1}{s\left(1+\rho \right)}d\left({x}_{2n},g{x}_{2n},a\right)\\ \ge \frac{1}{s\left(1+\rho \right)}\mathrm{min}\left\{d\left({x}_{2n},g{x}_{2n},a\right),d\left({x}_{2n},f{x}_{2n},a\right)\right\}\\ >d\left({x}_{2n},z,a\right),\end{array}$

if n is odd then we get

$\begin{array}{l}\frac{1}{s\left(1+\rho \right)}d\left({x}_{2n+1},f{x}_{2n+1},a\right)\\ \ge \frac{1}{s\left(1+\rho \right)}\mathrm{min}\left\{d\left({x}_{2n+1},g{x}_{2n+1},a\right),d\left({x}_{2n+1},f{x}_{2n+1},a\right)\right\}\\ >d\left({x}_{2n+1},z,a\right),\end{array}$

for $n\in N$. By (3.8) we have

$\begin{array}{l}d\left({x}_{2n},{x}_{2n+1},a\right)\\ \le s\left(d\left({x}_{2n},z,a\right)+d\left({x}_{2n+1},z,a\right)+d\left({x}_{2n},{x}_{2n+1},z\right)\right)\\ <\frac{s}{s\left(1+\rho \right)}d\left({x}_{2n},g{x}_{2n},a\right)+\frac{s}{s\left(1+\rho \right)}d\left({x}_{2n+1},f{x}_{2n+1},a\right)\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{ }+\frac{s}{s\left(1+\rho \right)}d\left({x}_{2n},g{x}_{2n},{x}_{2n+1}\right)\\ =\frac{1}{1+\rho }\left(d\left({x}_{2n},{x}_{2n+1},a\right)+d\left({x}_{2n+1},{x}_{2n+2},a\right)+d\left({x}_{2n},{x}_{2n+1},{x}_{2n+1}\right)\right)\end{array}$

$\begin{array}{l}\le \frac{1}{1+\rho }d\left({x}_{2n},{x}_{2n+1},a\right)+\frac{\rho }{{s}^{2}\left(1+\rho \right)}d\left({x}_{2n+1},{x}_{2n},a\right)\\ \le \frac{1}{1+\rho }d\left({x}_{2n},{x}_{2n+1},a\right)+\frac{\rho }{1+\rho }d\left({x}_{2n+1},{x}_{2n},a\right)\\ =d\left({x}_{2n},{x}_{2n+1},a\right),\end{array}$

this is impossible. Therefore, one of the following relations is true for every $n\in N$,

$\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left({x}_{2n},g{x}_{2n},a\right),d\left({x}_{2n},f{x}_{2n},a\right)\right\}\le d\left({x}_{2n},z,a\right),$

or

$\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left({x}_{2n+1},g{x}_{2n+1},a\right),d\left({x}_{2n+1},f{x}_{2n+1},a\right)\right\}\le d\left({x}_{2n+1},z,a\right).$

That means there exists a subsequence $\left\{{x}_{{n}_{k}}\right\}$ of $\left\{{x}_{n}\right\}$ such that (3.13) is true for every $k\in N$. Thus (3.2) shows that

$\begin{array}{l}d\left(g{x}_{2n},fz,a\right)\\ \le \mathrm{max}\left\{d\left(f{x}_{2n},gz,a\right),d\left(fz,g{x}_{2n},a\right),d\left(f{x}_{2n},fz,a\right),d\left(gz,f{x}_{2n},a\right)\right\}\\ \le \frac{\rho }{{s}^{2}}d\left({x}_{2n},z,a\right).\end{array}$

or

$\begin{array}{l}d\left(f{x}_{2n+1},fz,a\right)\\ \le \mathrm{max}\left\{d\left(g{x}_{2n+1},gz,a\right),d\left(fz,g{x}_{2n+1},a\right),d\left(f{x}_{2n+1},fz,a\right),d\left(gz,f{x}_{2n+1},a\right)\right\}\\ \le \frac{\rho }{{s}^{2}}d\left({x}_{2n+!},z,a\right).\end{array}$

From Lemma 2.5, we have

$\frac{1}{s}d\left(z,fz,a\right)\le \underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}d\left(g{x}_{2n},fz,a\right)\le \frac{\rho }{{s}^{2}}\underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}d\left({x}_{2n},z,a\right)\le \frac{\rho }{s}d\left(z,z,a\right)=0,$

or

$\frac{1}{s}d\left(z,fz,a\right)\le \underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}d\left(f{x}_{2n+1},fz,a\right)\le \frac{\rho }{{s}^{2}}\underset{n\to \infty }{\mathrm{lim}\mathrm{sup}}d\left({x}_{2n+1},z,a\right)\le \frac{\rho }{s}d\left(z,z,a\right)=0,$

Therefore $d\left(z,fz,a\right)\le 0$, which is impossible unless $fz=z$. hence z in X is a fixed point of f. From the process of the above proof, we know $fz=z$, then by

$0=\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left(z,fz,a\right),d\left(z,gz,a\right)\right\}\le d\left(z,fz,a\right)$,

it implies

$\begin{array}{c}d\left(gz,z,a\right)\le \mathrm{max}\left\{d\left(gz,gfz,a\right),d\left(gz,{f}^{2}z,a\right),d\left(fz,{f}^{2}z,a\right),d\left(gfz,fz,a\right)\right\}\\ \le \frac{\rho }{{s}^{2}}d\left(fz,z,a\right)=0,\end{array}$

this proves that $gz=z$. By (3.2) we can prove the uniqueness of the common fixed point z,

$\frac{1}{s}\varphi \left(\rho \right)\mathrm{min}\left\{d\left(z,fz,a\right),d\left(z,gz,a\right)\right\}\le d\left(z,{z}^{\prime },a\right)$, so (3.2) shows that

$\begin{array}{c}d\left(z,{z}^{\prime },a\right)=\mathrm{max}\left\{d\left(gz,g{z}^{\prime },a\right),d\left(fz,f{z}^{\prime },a\right),d\left(gz,f{z}^{\prime },a\right),d\left(g{z}^{\prime },fz,a\right)\right\}\\ \le \frac{\rho }{{s}^{2}}d\left(z,{z}^{\prime },a\right),\end{array}$

which is impossible unless $z={z}^{\prime }$. □

NOTES

*Corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

  Banach, S. (1922) Sur les opérations dans les ensembles abtraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, 133-181. https://doi.org/10.4064/fm-3-1-133-181  Ekeland, I. (1974) On the Variational Principle. Journal of Mathematical Analysis and Applications, 47, 324-353. https://doi.org/10.1016/0022-247X(74)90025-0  Meir, A. and Keeler, E. (1969) A Theorem on Contraction Mappings. Journal of Mathematical Analysis and Applications, 28, 326-329. https://doi.org/10.1016/0022-247X(69)90031-6  Nadler Jr., S.B. (1969) Multi-Valued Contraction Mappings. Pacific Journal of Mathematics, 30, 475-488. https://doi.org/10.2140/pjm.1969.30.475  Caristi, J. (1976) Fixed Point Theorems for Mappings Satisfying Inwardness Conditions. Transactions of the American Mathematical Society, 215, 241-251. https://doi.org/10.1090/S0002-9947-1976-0394329-4  Caristi, J. and Kirk, W.A. (1975) Geometric Fixed Point Theory and Inwardness Conditions. Lecture Notes in Mathematics, 499, 74-83. https://doi.org/10.1007/BFb0081133  Subrahmanyam, P.V. (1974) Remarks on Some Fixed Point Theorems Related to Banach’s Contraction Principle. Electronic Journal of Mathematical and Physical Sciences, 8, 445-457.  Suzuki, T. (2004) Generalized Distance and Existence Theorems in Complete Metric Spaces. Journal of Mathematical Analysis and Applications, 253, 440-458. https://doi.org/10.1006/jmaa.2000.7151  Mustafa, Z., Parvaech, V., Roshan, J.R. and Kadelburg, Z. (2014) b2-Metric Spaces and Some Fixed Point Theorems. Fixed Point Theory and Applications, 2014, Article Number: 144. https://doi.org/10.1186/1687-1812-2014-144  Fadail, Z.M., Ahmad, A.G.B., Ozturk, V. and Radenovi?, S. (2015) Some Remarks on Fixed Point Results of b2-Metric Spaces. Far East Journal of Mathematical Sciences, 97, 533-548. https://doi.org/10.17654/FJMSJul2015_533_548

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc. This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.