var lambda = arguments[i]; try { xhr2 = lambda(); break; } catch (e) { } } return xhr2; }, init: function () { return this.tryList( function () { return new ActiveXObject('MSXML2.XMLHttp.6.0'); }, function () { return new ActiveXObject('MSXML2.XMLHttp.3.0'); }, function () { return new XMLHttpRequest(); }, function () { return new ActiveXObject('MSXML2.XMLHttp.5.0'); }, function () { return new ActiveXObject('MSXML2.XMLHttp.4.0'); }, function () { return new ActiveXObject('Msxml2.XMLHTTP'); }, function () { return new ActiveXObject('MSXML.XMLHttp'); }, function () { return new ActiveXObject('Microsoft.XMLHTTP'); } ) || null; }, post: function (sUrl, sArgs, bAsync, fCallBack, errmsg) { var xhr2 = this.init(); xhr2.onreadystatechange = function () { if (xhr2.readyState == 4) { if (xhr2.responseText) { if (fCallBack.constructor == Function) { fCallBack(xhr2); } } else { //alert(errmsg); } } }; xhr2.open('POST', encodeURI(sUrl), bAsync); xhr2.setRequestHeader('Content-Length', sArgs.length); xhr2.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded'); xhr2.send(sArgs); }, get: function (sUrl, bAsync, fCallBack, errmsg) { var xhr2 = this.init(); xhr2.onreadystatechange = function () { if (xhr2.readyState == 4) { if (xhr2.responseText) { if (fCallBack.constructor == Function) { fCallBack(xhr2); } } else { alert(errmsg); } } }; xhr2.open('GET', encodeURI(sUrl), bAsync); xhr2.send('Null'); } } function SetSearchLink(item) { var url = "../journal/recordsearchinformation.aspx"; var skid = $(":hidden[id$=HiddenField_SKID]").val(); var args = "skid=" + skid; url = url + "?" + args + "&urllink=" + item; window.setTimeout("showSearchUrl('" + url + "')", 300); } function showSearchUrl(url) { var callback2 = function (xhr2) { } ajax2.get(url, true, callback2, "try"); }
JHEPGC> Vol.5 No.3, July 2019
Share This Article:
Cite This Paper >>

On an Exact Cylindrically Symmetric Solution in a Born-Infeld Type Theory of Gravity

Abstract Full-Text HTML Download Download as PDF (Size:887KB) PP. 711-718
DOI: 10.4236/jhepgc.2019.53038    169 Downloads   352 Views   Citations
Author(s)    Leave a comment
Tiago de Oliveira Rosa1, Maria Emilia Xavier Guimarães2, Joaquim Lopes Neto3

Affiliation(s)

1Instituto Federal Goiano, Campus Urutaí, Rodovia Geraldo Silva Nascimento, Urutaí, Brazil.
2Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil.
3Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

ABSTRACT

In this work, we derive an exact vacuum solution for a cylindrically symmetric metric in an extended gravity theory developed by Novello, De Lorenci and Luciane (hereafter referred to as the NDL theory) which is inspired in the Born-Infeld theory. The main goal of this paper is to nd a cosmic string solution for the NDL theory. However, a careful analysis of the metric shows that it is asymptotically singular and therefore does not represent a cosmic string solution.

KEYWORDS

Modi ed Theories of Gravity, Topological Defects

Cite this paper

Rosa, T. , Guimarães, M. and Neto, J. (2019) On an Exact Cylindrically Symmetric Solution in a Born-Infeld Type Theory of Gravity. Journal of High Energy Physics, Gravitation and Cosmology, 5, 711-718. doi: 10.4236/jhepgc.2019.53038.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Kibble, T.W. (1976) Topology of Cosmic Domains and Strings. Journal of Physics A: Mathematical and General, 9, 1378.
https://doi.org/10.1088/0305-4470/9/8/029
[2] Vilenkin, A. and Shellard, E.P. (1994) Cosmic String and Other Topological Defects. Cambridge University Press, Cambridge.
[3] Leineker Costa, M., Naves de Oliveira, A.L. and Guimarães, M.E.X. (2006) On the Contributions from Dilatonic Strings to the Flat Behavior of the Rotational Curves in Galaxies. International Journal of Modern Physics D, 15, 387-394.
https://doi.org/10.1142/S0218271806007924
[4] Caramês, T.R.P., de Mello, E.R.B. and Guimarães, M.E.X. (2011) Gravitational Field of a Global Monopole in a Modi_ed Gravity. International Journal of Modern Physics: Conference Series, 3, 446-454.
https://doi.org/10.1142/S2010194511000961
[5] Caramês, T.R.P., Bezerra de Mello, E.R. and Guimarães, M.E.X. (2012) On the Motion of a Test Particle Around a Global Monopole in a Modi_ed Gravity. Modern Physics Letters A, 27, Article ID: 1250177.
https://doi.org/10.1142/S0217732312501775
[6] Scherk, J. and Schwarz, J. (1974) Dual Models for Non-Hadrons. Nuclear Physics B, 81, 118-144.
https://doi.org/10.1016/0550-3213(74)90010-8
[7] Corda, C. (2009) Interferometric Detection of Gravitational Waves: The De_nitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. arXiv:0905.2505[gr-qc]
https://doi.org/10.1142/S0218271809015904
[8] Novello, M., De Lorenci, V.A., de Freitas, L.R. and Aguiar, O.D. (1999) The Velocity of Gravitational Waves. Physics Letters A, 254, 245-250.
https://doi.org/10.1016/S0375-9601(99)00080-8
[9] Novello, M., De Lorenci, V.A. and de Freitas, L.R. (1997) Do Gravitational Waves Travel at Light Velocity? Annals of Physics, 254, 83-108.
https://doi.org/10.1006/aphy.1996.5637
[10] Born, M. and Infeld, L. (1934) Cosmic Rays and the New Field Theory. Nature, 133, 63-64.
https://doi.org/10.1038/133063b0
[11] Feynman, R. (1995) Lectures on Gravitation. Addison-Wesley, Boston, MA.
[12] Deser, S. (1970) Self-Interaction and Gauge Invariance. General Relativity and Gravitation, 1, 9-18.
https://doi.org/10.1007/BF00759198

  
comments powered by Disqus
JHEPGC Subscription
E-Mail Alert
JHEPGC Most popular papers
Publication Ethics & OA Statement
JHEPGC News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.