Low-Molecular-Weight Heparin and Protamine-Based Polyelectrolyte Nano Complexes for Protein Delivery (A Review Articles)

DOI: 10.4236/jbnb.2011.225061   PDF   HTML     5,437 Downloads   9,467 Views   Citations


We produced low-molecular-weight heparin/protamine micro (nano) particles (LMW-H/P MPs·NPs) as a carrier for heparin-binding growth factors (GFs), such as fibroblast growth factor (FGF)-2 and various GFs in platelet-rich plasma (PRP). A mixture of LMW-H (MW: approximately 5000 Da, 6.4 mg/ml) and protamine (MW: approximately 3000 Da, 10 mg/ml) at a ratio of 7:3 (vol:vol) yields a dispersion of micro (nano) particles (200 nm - 3 µm in diameter). The diluted LMW-H solution in saline (0.32 mg/ml) mixed with diluted protamine (0.5 mg/ml) at a ratio at 7:3 (vol:vol) resulted in soluble nanoparticles (approximately 100 nm in diameter). The generated NPs could be then stabilized by adding 2 mg/ml dextran (MW: 178-217 kDa) and remained soluble after lyophilization of dialyzed LMW-H /P NPs solution. The LMW-H/P MPs·NPs adsorb GFs, control their release, protect GFs and activate their biological activities. Furthermore, administration of GFs-containing F/P MPs·NPs exhibited significantly higher inductions of vascularization and fibrous tissue formation in vivo than GFs alone. LMW-H/P MPs·NPs can also efficiently bind to tissue culture plates and retain the binding of GFs. The LMW-H/P MPs·NP-coated matrix with various GFs or cytokines provided novel biomaterials that could control cellular activity such as proliferation and differentiation. Thus, LMW-H/P MPs·NPs are an excellent carrier for GFs and are a functional coating matrix for various kinds of cell cultures.

Share and Cite:

Ishihara, M. , Kishimoto, S. , Takikawa, M. , Mori, Y. , Nakamura, S. and Fujita, M. (2011) Low-Molecular-Weight Heparin and Protamine-Based Polyelectrolyte Nano Complexes for Protein Delivery (A Review Articles). Journal of Biomaterials and Nanobiotechnology, 2, 500-509. doi: 10.4236/jbnb.2011.225061.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. M. Park, B. B. Muhoberac, P. L Dubin and J. Xia, “Effect of Protein Charge Heterogeneity in Protein-Polyelectrolyte Complexation,” Macromolecules, Vol. 25, No. 1, 1992, pp. 290-295. doi:10.1021/ma00027a047
[2] K. W. Mattison, P. L. Dubin and I. J. Brittain, “Complex Formation between Bovine Serum Albumin and Strong Polyelectrolytes: Effect of Polymer Charge Density,” Journal of Physical Chemistry B, Vol. 102, No. 19, 1998, pp. 3830-3836. doi:10.1021/jp980486u
[3] S. Dragan, M. Cristea, C. Luca and B. C. Simionescu, “Polyelectrolyte Complex. I: Synthesis and Characterization of Some Insoluble Polyanion-Polycation Complexes,” Journal of Polymer Science A, Vol. 34, No. 17, 1996, pp. 3487-3495. doi:10.1002/(SICI)1099-0518(199612)34:17<3485::AID-POLA3>3.0.CO;2-U
[4] Y. Koyama, M. Yamashita, N. I. Tanaka and T. Ito, “Enhancement of Transcriptional Activity of DNA Complexes by Amphoteric PEG Derivertive,” Biomacromolecules, Vol. 7, No. 4, 2006, 1274-1279. doi:10.1021/bm0504633
[5] L. Webster, M. B. Huglin and I. D. Robb, “Complex Formation between Poly-Electrolytes in Dilute Aqueous Solution,” Polymer, Vol. 38, No. 6, 1997, pp. 1373-1380. doi:10.1016/S0032-3861(96)00650-7
[6] M. Hashimoto, Y. Koyama and T. Sato, “In Vitro Gene Delivery by pDNA/Chitosan Complexes Coated with Anionic PEG Derivatives That Have a Sugar Side Chain,” Chemistry Letter, Vol. 37, No. 3, 2008, pp. 266-267. doi:10.1246/cl.2008.266
[7] A. Denuziere, D. Ferrier and A. Domard, “Chitosan-Chondroitin Sulfate and Chitosan-Hyaluronate Polyelectrolyte Complexes. Physico-Chemical Aspects,” Carbohydrate Polymer, Vol. 29, No. 4, 1996, pp. 317-323. doi:10.1016/S0144-8617(96)00035-5
[8] S. Nakamura, Y. Kanatani, S. Kishimoto, M. Nambu, C. Ohno, H. Hattori, B. Takase, Y. Tanaka, H. Yura, T. Kiyosawa, T. Maehara and M. Ishihara, “Controlled Release of FGF-2 Using Fragmin/Protamine Microparticles and Effect on Neovascularization,” Journal of Biomedical Materials Research A, Vol. 91, No. 3, 2009, pp. 814-823. doi:10.1002/jbm.a.32265
[9] Y. Mori, S. Nakamura, S. Kishimoto, M. Kawakami, S. Satoshi, T. Matsui and M. Ishihara, “Preparation and Characterization of Low-Molecular-Weight Heparin/Protamine Nanoparticles (LMW-H/P NPs) as FGF-2 Carrier,” International Journal of Nanomedicine, Vol. 5, 2010, pp. 147-155. doi:10.2147/IJN.S8692
[10] M. Takikawa, S-I. Nakamura, S. Nakamura, M. Nambu, M. Ishihara, M. Fujita, S. Kishimoto, T. Doumoto, S. Yanagibayashi, R. Azuma, N. Yamamoto and T. Kiyosawa, “Enhancement of Vascularization and Granulation Tissue Formation by Growth Factors in Human Platelet- Rich Plasma-Containing Fragmin/Protamine Microparticles,” Journal of Biomedical Materials Research B, Vol. 97, 2011, pp. 373-380. doi:10.1002/jbm.b.31824
[11] M. Ishihara and K. Ono, “Structure and Function of Heparin and Heparan Sulfate: Heparinoid Library and Modification of FGF-Activities,” Trends in Glycoscience and Glycotechnoogy, Vol. 10, No. 52, 1998, pp. 223-233. doi:10.4052/tigg.10.223
[12] M. Salmivirta, K. Lidhold and U. Lindahl, “Heparan Sulfate: A Piece of Information,” FASEB Journal, Vol. 10, No. 52, 1996, pp. 1270-1279.
[13] U, Lindahl, K. Lidholt, D. Spillmann and L. Kjellen, “More to ‘Heparin’ Than Anti-Coagulation,” Thrombosis Research, Vol. 75, No. 1, 1994, pp. 1-32. doi:10.1016/0049-3848(94)90136-8
[14] J. Hirsh, T. E. Warkentin, S. G. Shaughnessy, S. S. Anand, J. L. Halperin, R. Raschke and C. Granger, “Heparin and Low-Molecular Heparin, Mechanisms of Action, Phormacokinetics, Dosing, Monitoring, Efficacy, and Safety,” Chest, Vol. 119, No. 2, 2001, pp. 64-94. doi:10.1378/chest.119.1_suppl.645
[15] M. Wolzt, A. Wetermann, M. Nieszpaur-Los, B. Schneider, A. Fassolt, K. Lechner, H. Eichler and P. A. Kyrle, “Studies on the Neutralizing Effects of Protamine on Unfractionated and Low Molecular Weight Heparin (Fragmin?) at the Site of Activation of the Coagulation System in Man,” Thrombosis and Haemostasis, Vol. 73, No. 3, 1995, pp. 439-443.
[16] M. Pan, J. S. Lezo, A. Medina, M. Romero, E. Hernandez, J. Segura, F. Melian, F. Wanguemert, M. Landin, F. Benitez, M. Amay, F. Velasco and A. Torres, “In-Laboratory Removal of Femoral Sheath Following Protamine Administration in Patients Having Intracoronary Stent Implantation,” American Journal of Cardiology, Vol. 80, No. 10, 1997, pp. 1336-1338. doi:10.1016/S0002-9149(97)00676-0
[17] M. Fujita, M. Ishihara, M. Shimizu, K. Obara, T. Ishizuka, Y. Saito, H. Yura, Y. Morimoto, B. Takase, T. Matsui, M. Kikuchi and A. Kurita, “Vascularization in Vivo Caused by the Controlled Release of Fibroblast Growth Factor-2 from an Injectable Chitosan/Non-Anticoagulant Heparin Hydrogel,” Biomaterials, Vol. 25, No. 4, 2004, pp. 699- 706. doi:10.1016/S0142-9612(03)00557-X
[18] S. Nakamura, M. Nambu, S. Kishimoto, T. Ishizuka, H. Hattori, Y. Kanatani, B. Takase, H. Aoki, T. Kiyosawa, T. Maehara and M. Ishihara, “Effect of Controlled Release of Fibroblast Growth Factor-2 from Chitosan/Fucoidan Micro Complex Hydrogel on in Vitro and in Vivo Vascularization,” Journal of Biomedical Materials Research A, Vol. 85, 2008, pp. 619-627. doi:10.1002/jbm.a.31563
[19] S. Kishimoto, S. Nakamura, S.-I. Nakamura, Y. Kanatani, H. Hattori, Y. Tanaka, Y. Harada, M. Tagawa, Y. Mori, T. Maehara and M. Ishihara, “Fragmin/protamine Microparticle-Coated Matrix Immobilized Cytokines to Stimulate Various Cell Proliferations with Low Serum Media,” Artificial Organs, Vol. 33, No. 6, 2009, pp. 431-438. doi:10.1111/j.1525-1594.2009.00745.x
[20] S. Kishimoto, H. Hattori, S. Nakamura, Y. Amano, Y. Kanatani, Y. Tanaka, Y Mori, Y. Harada, M. Tagawa and M. Ishihara, “Expansion and Characterization of Human bone Marrow-Derived Mesenchymal Stem Cells Cultured on Fragmin/Protamine Microparticle-Coated Matrix with Fibroblast Growth Factor-2 in Low Serum Medium,” Tissue Engineering Part C, Vol. 15, No. 3, 2009, pp. 523- 527. doi:10.1089/ten.tec.2008.0492
[21] S. Kishimoto, S. Nakamura, S.-I. Nakamura, H. Hattori, F. Oomuma, Y. Kanatani, Y. Tanaka, Y. Harada, M. Tagawa, T. Maehara and M. Ishihara, “Cytokine-Immobilized Microparticle-Coated Plates for Culturing Hematopoietic Progenitor Cells,” Journal of Controlled Release, Vol. 133, 2009, pp. 185-190. doi:10.1016/j/jconrel,2008.10.005
[22] D. Gospodarowicz and J. Cheng, “Heparin Protects Basic and Acidic FGF from Inactivation,” Journal of Cellular Physiology, Vol. 128, No. 3, 1986, pp. 475-484. doi:10.1002/jcp.1041280317
[23] S.I. Nakamura, M. Ishihara, M. Takikawa, K. Murakami, S. Kishimoto, S. Nakamura, S. Yanagibayashi, Y. Mori, M. Fujita, S. Kubo, N. Yamamoto and T. Kiyosawa, “Increased Survival of Free Fat Grafts and Vascularization in Rats with Local Delivery of Fragmin/Protamine Microparticles Containing FGF-2 (F/P MP-F),” Journal of Biomedical Materials Research B, Vol. 96, 2011, pp. 234-241. doi:10.1002/jbm.b.31757
[24] T. Horio, M. Fujita, Y. Tanaka, M. Ishihara, S. Kishimoto, S. Nakamura, M. Shimizu, Y. Nogami, H. Hattori, K. Hase and T. Maehara, “Efficacy of Fragmin/Protamine Microparticles Containing Fibroblast Growth Factor-2 (F/P MP/FGF-2) in a Rabbit Model of Hindlimb Ischemia,” Journal of Vascular Surgery, Vol. 54, 2011, pp. 791-798. doi:10.1016/j.jvs.2011.02.060
[25] R. E. Marx, “Platelet-Rich Plasma: Evidence to Support Its Use,” Journal of Oral and Maxillofacial Surgery, Vol. 62, 2001, pp. 225-228. doi:10.1016/j.joms.2003.12.003
[26] B. L. Eppley, W. S. Pietrzak and M. Blanton, “Platelet-rich Plasma: A Review of Biology and Application in Plastic Surgery,” Plastic and Reconstructive Surgery, Vol. 118, 2002, pp. 147-159. doi:10.1097/01.prs.0000239606.92676.cf
[27] M. Takikawa, Y. Sumi, M. Ishihara, S. Kishimoto, S. Nakamura, S. Yanagibayashi, H. Hattori, R. Azuma, N. Yamamoto and T. Kiyosawa, “PRP&F/P MPs Improved Survival of Dorsal Paired Pedicle Skin Flaps in Rats,” Journal of Surgical Research, Vol. 170, 2011, pp. 189- 196. doi:10.1016/j/jss.2011.05.051
[28] M. Takikawa, S.I. Nakamura, S. Nakamura, M. Nambu, M. Ishihara, K. Murakami, S. Kishimoto, K. Sasaki, S. Yanagishita, R. Azuma, N. Yamamoto and T. Kiyosawa, “Enhanced Effect of Platelet-Rich Plasma Containing a New Carrier on Hair Growth,” Dermatologic Surgery, Vol. 37, 2011, pp. 1-9. doi:10.1111/j.1524-4725.2011.02123.x
[29] D. J. Prockop, “Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues,” Science, Vol. 276, No. 5309, 1997, pp. 71-74. doi:10.1126/science.276.5309.71
[30] M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak, “Multilineage Potential of Adult Human Mesenchymal Stem Cells,” Science, Vol. 284, No. 5411, 1999, pp. 143-147. doi:10.1126/science.284.5411.143
[31] G. Ferrari, G. Cusella-DeAngelis, M. Coletta, E. Paolucci, A. Stornaiuolo, G. Cossu and F. Mavilio, “Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors,” Science, Vol. 279, No. 5356, 1998, pp. 1528-1530. doi:10.1126/science.279.5356.1528
[32] T. M. Coyne, A. J. Marcus, K. Reynold, I. B. Black and D. Woodbury, “Desparate Host Response and Donor Survival after the Transplantation of Mesenchymal or Neuroectodermal Cells to the Intact Roden Brain,” Transplantation, Vol. 84, No. 11, 2007, pp. 1507-1516. doi:10.1097/01.tp.0000288185.09601.4d
[33] S. Nakamura, S. Kishimoto, S.I. Nakamura, M. Nambu, M. Fujita, Y. Tanaka, Y. Mori, M. Tagawa, T. Maehara and M. Ishihara, “Fragmin/Protamine Microparticles as Cell Carriers to Enhance Viability of Adipose-Derived Stromal Cells and Their Subsequent Effect on in Vivo Neovascularization,” Journal of Biomedical Matererials Research A, Vol. 92, 2010, pp. 1614-1622. doi:10.1002/jbm.a.32506
[34] J. L. Spees, C. A. Gregory, H. Singh, H. A. Tucker, A. Peister, P. J. Lynch, S. C. Hsu, J. Smith and D. J. Prockop, “Internalized Antigens Must Be Removed to Prepare Hypoimmunogenic Mesenchymal Stem Cells for Cell and Gene Therapy,” Molecular Therapy, Vol. 9, No. 5, 2004, pp. 747-756. doi:10.1016/j.ymthe.2004.02.012
[35] M. J. Martin, A. Muotri, F. Gage and A. Varki, “Human embryonic Stem Cells Express an Immunogenic Nonhuman Sialic Acid,” Nature Medicine, Vol. 11, No. 2, 2005, pp. 228-232.
[36] P. Gupta, T. R. Oegema, J. J. Brazil, A. Z. Dudek, A. Slungaard and C. M. Verfaillie, “Structurally Specific Heparan Sulfates Support Primitive Human Hematopoiesis by Formation of a Multimolecular Stem Cell Niche,” Blood, Vol. 92, No. 12, 1998, 4641-4651.
[37] M. Alvarez-Silva and R. Borojevic, “GM-CSF and IL-3 Activities in Schistosomal Liver Granulomas Are Controlled by Stroma-Associated Heparan Sulfate Proteoglycans,” Journal of Leukocyte Biology, Vol. 59, No. 3, 1996, pp. 435-441.
[38] R. Roberts, J. Gallagher, E. Spooncer, T. D. Allen, F. Bloomfield and T. M. Dexter, “Heparan Sulfate Bound Growth Factors: A Mechanism for Stromal Cell Mediated Haemopoiesis,” Nature, Vol. 332, No. 6162, 1988, pp. 376-378. doi:10.1038/332376a0
[39] M. Y. Gordon, G. P. Riley, S. M. Watt and M. F. Greaves, “Compartmentalization of a Haematopoietic Growth Factor (GM-CSF) by Glycosaminoglycans in the Bone Marrow Microenvironment,” Nature, Vol. 326, No. 6111, 1987, pp. 403-405. doi:10.1038/326403a0
[40] A. L. Drayer, S. G. Olthof and E. Vellenga, “Mammalian Target of Rapamycin Is Required for Thrombopoietin-Induced Proliferation of Megakaryocyte Progenitors,” Stem Cells, Vol. 24, No. 1, 2006, pp. 105-114. doi:10.1634/stemcells-2005-0062
[41] H. Schepers, A. T. Wierenga, D. V. Gasliga, B. J. Eggen, E. Vellenga and J. J. Schuringa, “Reintroduction of C/EBPalpha in Leukemic CD34+ Stem/Progenitor Cells Impairs Self-Renewal and Partially Restores Myelopoiesis,” Blood, Vol. 110, No. 4, 2007, pp. 1317-1325. doi:10.1182/blood-2006-10-052175

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.