Growth of Boron Nitride Nanotubes Having Large Surface Area Using Mechanothermal Process
Sunil K. Singhal, Avanish K. Srivastava, Rakesh B. Mathur
.
DOI: 10.4236/wjnse.2011.14018   PDF    HTML     4,527 Downloads   10,091 Views   Citations

Abstract

Nanostructures of boron nitride (BN) including nanotubes, nanofibers and nanosheets having a large surface area are very useful in storing hydrogen and other gases. In the present paper we report the synthesis and characterization of these nanostructures of BN using mechanothermal process. Under this process elemental boron powder is first ball milled to about 50 h in an inert atmosphere and then annealed at 1100℃ - 1250℃ for 6 h in the presence of NH3 gas. By this treatment nanotubes and other nanostructures of BN were synthesized. The diameter of BN nanotubes varied from 20 to 50 nm and most of them exhibited spindle or bamboo like morphology. Because of the large surface area, these nanotubes may be explored for a better hydrogen gas storage device as compared to the crystallized nanotubes. The main advantage of this technique is that the nanotubes can be grown in large quantity. A possible growth mechanism towards the evolution of such fascinating nano-objects of boron nitride has been discussed employing high-resolution transmission electron microscopy and photoluminescence.

Share and Cite:

S. Singhal, A. Srivastava and R. Mathur, "Growth of Boron Nitride Nanotubes Having Large Surface Area Using Mechanothermal Process," World Journal of Nano Science and Engineering, Vol. 1 No. 4, 2011, pp. 119-128. doi: 10.4236/wjnse.2011.14018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. H. Lee, J. Wang, V. K. Kayatsha, J. Y. Huang and Y. K. Yap, “Effective Growth of Boron Nitride Nanotubes by Thermal Chemical Vapor Deposition,” Nanotechnology, Vol. 19, No. 45, 2008, pp. 455605. doi:10.1088/0957-4484/19/45/455605
[2] Y. Chen, J. Zou, S. J. Campbell and G. L. Caer, “Boron Nitride Nanotubes: Pronounced Resistance to Oxidation,” Applied Physics Letters, Vol. 84, No. 13, 2004, pp. 2430-2433. doi:10.1063/1.1667278
[3] C. W. Chang, W.-Q. Han and A. Zettl, “Thermal Conductivity of B-C-N and BN Nanotubes,” Applied Physics Letters, Vol. 86, No. 17, 2005, pp. 173102-173104. doi:10.1063/1.1914963
[4] J. Ravichandran, A. G. Manoj, J. Liu, I. Manna and D. L. Carrol, “A Novel Polymer Nanotube Composite for Photovoltaic Packaging Applications,” Nanotechnology, Vol. 19, No. 8, 2008, p. 085712. doi:10.1088/0957-4484/19/8/085712
[5] N. P. Bansal, J. B. Hurst and S. R. Choi, “Boron Nitride Nanotubes-Reinforced Glass Composites” Journal of the American Ceramic Society, Vol. 89, No. 1, 2006, pp. 388-389. doi:10.1111/j.1551-2916.2005.00701.x
[6] S. S. Han and H. M. Lee, “Adsorption Properties of Hydrogen on (10,0) Single-Walled Carbon Nanotube through Density Functional Theory,” Carbon, Vol. 42, No. 11, 2004, pp. 2169-2177. doi:10.1016/j.carbon.2004.04.025
[7] J. Lawrence and G. Xu, “High Pressure Saturation of Hydrogen Stored by Single-Wall Carbon Nanotubes,” Applied Physics Letters, Vol. 84, No. 6, 2004, pp. 918-920. doi:10.1063/1.1646728
[8] S. H. Lim, J. Luo, W. Li and J. Lin, “Synthesis of Boron Nitride Nanotubes and Its Hydrogen Uptake,” Catalysis Today, Vo. 120, No. 3-4, 2007, pp. 346-350. doi:10.1016/j.cattod.2006.09.016
[9] R. Ma, Y. Bnado, T. Sato, D. Golberg, H. Zhu, C. Xu and D. Wu, “Synthesis of Boron Nitride Nanofibers and Measurement of Their Hydrogen Uptake Capacity,” Applied Physics Letters, Vol. 81, No. 27, 2002, pp. 5225-5257. doi:10.1063/1.1534415
[10] Z. Zhou, J. Zhao, Z. Chen, X. Gao, T. Yan, B. Wen, P. Van and R. Schlayer, “ Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes,” Journal of Physical Chemistry B, Vol. 110, No. 27, 2006, pp. 13363-13369. doi:10.1021/jp0622740
[11] C. C. Tang, Y. Bando, X. Ding, S. Qi and D. Golberg, “Catalyzed Collapse and Enhanced Hydrogen Storage of BN Nanotubes,” Journal of the American Chemical Society, Vol. 124, No. 49, 2002, pp. 14550-14551. doi:10.1021/ja028051e
[12] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie and A. Zettl, “Boron Nitride Nanotubes,” Science, Vol. 269, No. 5226, 1995, pp. 966-967. doi:10.1126/science.269.5226.966
[13] D. Golberg, Y. Bando, M. Eremets, K .Takemura, K. Kurashima and H. Yusa, “Nanotubes in Boron Nitride Laser Heated at High Pressure,” Applied Physics Letters, Vol. 69, No. 14, 1996, pp. 2045-2047. doi:10.1063/1.116874
[14] D. Golberg, W. Han, Y. Bando, L. Bourgeois, K. Kurashima and T. Sato, “Fine Structure of Born Nitride Nanotubes Produced from Carbon Nanotubes by a Substitution Reaction,” Journal of Applied Physics, Vol. 86, No. 4, 1999, pp. 2364-2366. doi:10.1063/1.371058
[15] C. C. Tang, Y. Bando, T. Sato and K. Kurashima, “A Novel Precursor for the Synthesis of Pure Boron Nitride Nanotubes,” Chemical Communications, No. 12, 2002, pp. 1290-1291. doi:10.1039/B202177C
[16] Y. Chen, J. F. Gerald, J. S. Williams and S. Bulcock, “Synthesis of Boron Nitride Nanotubes at Low Temperatures Using Reactive Ball Milling,” Chemical Physics Letters, Vol. 299, No. 3-4, 1999, pp. 260-264. doi:10.1016/S0009-2614(98)01252-4
[17] Y. Chen, L. T. Chadderton, J. F. Gerald, J. S. Williams, “A Solid-State Process for the Formation Boron Nitride Nanotubes,” Applied Physics Letters, Vol. 74, No. 20, 1999, pp. 2960-2962. doi:10.1063/1.123979
[18] Y. Chen, J. F. Gerald, J. S. Williams and P. Willis, “Mechanochemical Synthesis of Boron Nitride Nanotubes,” Journal of Metastable and Nanocrystalline Materials, Vol. 2-6, 1999, pp. 173-187. doi:10.4028/www.scientific.net/JMNM.2-6.173
[19] Y. Chen, M. Conway J. S. Williams and J. Zou, “Large-Quantity Production of High-Yield Boron Nitride Nanotubes,” Journal of Materials Research, Vol. 17, No. 8, 2002, pp. 1896-1899. doi:10.1557/JMR.2002.0281
[20] S. K. Singhal, A. K. Srivastva, R. P. Pant, S. K. Halder, B. P. Singh and A. K. Gupta, “Synthesis of Boron Nitride Nanotubes Employing Mechanothermal Process and Its Characterization,” Journal of Materials Science, Vol. 43, No. 15, 2008, pp. 5243-5250. doi:10.1007/s10853-008-2770-3
[21] J. F. Gerald, Y. Chen and M. J. Conway, “Nanotube Growth during Annealing of Mechanically Milled Boron,” Applied Physics A, Vol. 76, No. 1, 2003, pp.107-110. doi:10.1007/s00339-002-1441-5
[22] S. Y. Bae, H. W. Seo, J. Park, Y. S. Choi, J. C. Park and S. Y. Lee, “Boron Nitride Nanotubes Synthesized in The Temperature Range 1000℃ - 1200℃,” Chemical Physics Letters, Vol. 374, No. 5-6, 2003, pp. 534-541. doi:10.1016/S0009-2614(03)00745-0
[23] F. Q. Ji, C. B. Cao, H. Xu and Z. G. Yang, “Mechano-synthesis of Boron Nitride Nanotubes,” Chinese Journal of Chemical Engineering, Vol. 14, No. 3, 2006, pp. 389-393. doi:10.1016/S1004-9541(06)60088-8
[24] T. Terao, Y. Bando, M. Mitome, K. Kurashima, C. Y. Zhi, C. C. Tang and D. Golberg, “Effective Synthesis of Surface-Modified Boron Nitride Nanotubes and Related Nano-structures and Their Hydrogen Uptake,” Physica E, Vol. 40, No. 7, 2008, pp. 2551-2555. doi:10.1016/j.physe.2007.10.014.
[25] C. Y. Zhi, Y. Bando, C. C. Tang and D. Golberg, “Effective Precursor for High Yield Synthesis of Pure BN Nanotubes,” Solid State Communications, Vol. 135, No. 1-2, 2005, pp. 67-70. doi:10.1016/j.physe.2007.10.014.
[26] J. Yu, Y. Chen, R. G. Elliman and M. Petravic,” Isotopically Enriched 10BN Nanotubes,” Advanced Materials, Vol. 18, No. 16, 2006, pp. 2157-2160. doi:10.1002/adma.200600231
[27] G. J. Tibbetts, “Why Are Carbon Filaments Tubular,” Journal of Crystal Growth, Vol. 66, No. 3, 1984, pp. 632-638. doi:10.1016/0022-0248(84)90163-5
[28] L. T. Chadderton and Y. Chen, “Nanotube Growth by Surface Diffusion,” Physics Letters A, Vol. 263, No. 4-6, 1999, pp. 401-405. doi:10.1016/S0375-9601(99)00731-8
[29] L. T. Chadderton and Y. Chen, “A Model for the Growth Bamboo and Skeletal Nanotubes: Catalytic Capillarity,” Journal of Crystal Growth, Vol. 240, No. 1-2, 2002, pp. 164-169. doi:10.1016/S0022-0248(02)00855-2
[30] H. F. Huo, Z. Hu, J. J. Fu, H. Xu, X. Z. Wang, Y. Chen and Y. N. Lu, “Microstructure and Growth Model of Period Spindle-Unit BN Nanotubes by Nitriding Fe-B Nanoparticles with Nitrogen/Ammonia Mixture,” Journal of Physical Chemistry B, Vol. 107, No. 41, 2003, pp. 11316- 11320. doi:10.1021/jp035375w
[31] K. F. Hou, Z. Hu, F. Chen, J. J. Fu, Y. Chen, B. H. Liu, J. Ding, Z. L. Dong and T. White, “Synthesis of Boron Nitride Nanowires,” Applied Physics Letters, Vol. 80, No. 19, 2002, pp. 3611-3613. doi:10.1063/1.1479213
[32] A. Chambers, C. Park, R. T. K. Baker and N. M. Rodriguez, “Hydrogen storage in Graphite Nanofibers,” Journal of Physical Chemistry B, Vol. 102, No. 22, 1998, pp. 4253-4256. doi:10.1021/jp980114l.
[33] S. Jhi and Y. Kwon, “Hydrogen Adsorption on Boron Nitride Nanotubes: A Path to Room-Temperature Hydrogen Storage,” Physical Review B, Vol. 69, No. 24, 2004, p. 245407. doi:10.1103/Phys Rev B.69.245407
[34] J. Yu, Y. Chen, R. Wuhrer, Z. Liu and S. P. Ranger, “Insitu Formation of BN Nanotubes during Nitriding Reactions,” Chemistry of Materials, Vol. 17, No. 20, 2005, pp. 5172-5176. doi:10.1021/cm050966f
[35] J. Yu, D. Yu, Y. Chen, H. Chen, M. Y. Lin, B. M. Cheng, J. Li and W. Duan, “Narrowed Bandgaps and Stronger Excitonic Effects from Small Boron Nitride Nanotubes,” Chemical Physics Letters, Vol. 476, No. 4-6, 2009, pp. 240-243. doi:10.1016/j.cplett.2009.06.012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.