Share This Article:

Design of a Silicon Overlay Glass Waveguide Sensor

Abstract Full-Text HTML Download Download as PDF (Size:121KB) PP. 151-154
DOI: 10.4236/opj.2011.14025    4,861 Downloads   8,405 Views   Citations

ABSTRACT

A glass based slab waveguide, coated with a thin patterned high dielectric overlay, is configured into a refractive index sensor. The asymmetric nature of the waveguide configuration is exploited by keeping the mode in the slab waveguide while enhancing the field level in the overlay-superstrate. The sensor's response is examined using the FDTD simulation technique. A sensitivity of up to one part in 105 in the index of refraction discrimination is determined. The nature of the sensor ensures optical fibre compatibility, requires sub-µL sample volumes and provides a high resolution.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Medri and R. Gauthier, "Design of a Silicon Overlay Glass Waveguide Sensor," Optics and Photonics Journal, Vol. 1 No. 4, 2011, pp. 151-154. doi: 10.4236/opj.2011.14025.

References

[1] M. Kawachi, “Recent Progress in Silica-Based Planar Lightwave Circuits on Silicon,” IEE Proceedings: Opto- electronics, Vol. 143, No. 5, 1996, pp. 257-262. doi:10.1049/ip-opt:19960493
[2] J. Broquin, “Glass Integrated Optics: State of the Art and Position toward Other Technologies,” Proceedings of SPIE, Vol. 6475, No. 7, 2007, pp. 1-13. doi:10.1117/12.706785
[3] P. Prabhathan, V. M. Murukeshan and J. Zhang, “Com- pact SOI Nanowire Refractive Index Sensor Using Phase Shifted Bragg Grating,” Optics Express, Vol. 17, No. 17, 2009, pp. 15330-15341. doi:10.1364/OE.17.015330
[4] S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeum- ner and D. Erickson, “Nanoscale Optofluidic Sensor Arrays for Dengue Virus Detection,” Nanoengineering: Fabrication, Properties, Optics and Devices IV, The International Society for Optical Engineering (SPIE), 2007.
[5] V. M. N. Passaro, R. Loiacono, G. D’Amico and F. De Leonardis, “Design of Bragg Grating Sensors Based on Submicrometer Optical Rib Waveguides in SOI,” IEEE Sensors Journal, Vol. 8, No. 9, 2008, pp. 1603-1611. doi:10.1109/JSEN.2008.929068
[6] K. E. Medri and R. C. Gauthier, “Patterned Overlays: Thin Silicon Layer Applied to Glass Waveguides,” Proceedings of SPIE, Vol. 7943, No. L, 2011, pp. 1-12. doi:10.1117/12.873426
[7] K. Okamoto, “Fundamentals of Optical Waveguides,” Se- cond Edition. Academic Press, Cleveland, 2005.
[8] C. Chen, “Foundations for Guided-Wave Optics,” John Wiley, Hoboken, 2006. doi:10.1002/0470042222
[9] C. Chen, “Development and Implementation of Novel Numerical Techniques for Integrated Optics and Microwave Planar Structures,” Ottawa-Carleton Institute for Electrical and Computer Engineering, Ottawa, 2000.
[10] A. Yimit, A. G. Rossberg, T. Amemiya and K. Itoh, “Thin Film Composite Optical Waveguides for Sensor Applications: A Review,” Talanta, Vol. 65, No. 5, 2005, pp. 1102-1109. doi:10.1016/j.talanta.2004.06.045
[11] A. Yariv, “Coupled-Mode Theory for Guided-Wave Optics,” IEEE Journal of Quantum Electronics, Vol. 9, No. 9, 1973, pp. 919-933. doi:10.1109/JQE.1973.1077767
[12] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos and S. G. Johnson, “Meep: A Flexible Free-Software Package for Electromagnetic Simulations by the FDTD Method,” Computer Physics Communications, Vol. 181, No. 2, 2010, pp. 687-702. doi:10.1016/j.cpc.2009.11.008
[13] I. Giuntoni, M. Krause, H. Renner, J. Bruns, A. Gajda, E. Brinkmeyer and K. Petermann, “Numerical Survey on Bragg Reflectors in Silicon-On-Insulator Waveguides,” 5th International Conference on Group IV Photonics, 17-19September 2008, pp. 285-287.
[14] M. Hammer and O. V. Ivanova, “Effective Index Appro- ximations of Photonic Crystal Slabs: A 2-to-1-D Assessment,” Optical and Quantum Electronics, Vol. 41, No. 4, 2009, pp. 267-283. doi:10.1007/s11082-009-9349-3
[15] B. E. A. Saleh and M. C. Teich, “Fundamentals of Pho- tonics,” John Wiley, Hoboken, 1991. doi:10.1002/0471213748
[16] A. H. Harvey, J. S. Gallagher and J. M. H. L. Sengers, “Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density,” Journal of Physical and Chemical Reference Data, Vol. 27, No. 7, 1998, pp. 761-74.
[17] F.J. Bates, et al., “Polarimetry, Saccharimetry and the Sugars,” National Bureau of Standards C440, U.S. Government Printing Office, Wahington, DC, 1942.
[18] R. C. Weast, “Handbook of Chemistry and Physics,” CRC Press, Cleveland, 1977.
[19] A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini and M. Giordano, “Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor,” IEEE Photonics Technology Letters, Vol. 16, No. 4, 2004, pp. 1149-1151. doi:10.1109/LPT.2004.824972
[20] A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano and A. Cusano, “Refractive Index Sensor Based on Microstructured Fiber Bragg Grating,” IEEE Photonics Technology Letters, Vol. 17, No. 6, 2005, pp. 1250-1252. doi:10.1109/LPT.2005.846570
[21] L. Poladian, F. Ladouceur and P. D. Miller, “Effects of Surface Roughness on Gratings,” Journal of the Optical Society of America B (Optical Physics), Vol. 14, No. 6, 1997, pp. 1339-1344.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.