Perception and prevalence of behavioral risk factors: the lifestyle risk scale (LRS)
Beatrix Algurén, Rolf Weitkunat
DOI: 10.4236/ojpm.2011.13019   PDF    HTML     5,077 Downloads   10,159 Views  


Objective: To develop a lifestyle risk scale (LRS) of health-related behaviors based on risk assessments of study participants. Method: By means of pairwise comparisons of assessed risks associated with tobacco, alcohol, obesity, fast-food, physical inactivity, and lack of sleep, each at four levels, 24 behaviors were ranked on a unidimensional risk scale. Results: Overall, use of tobacco was assigned the highest risk score (3.7), consumption of fast-food and lack of sleep the lowest (1.7, 1.6). Minor risk factors (lack of sleep and fast-food) were, at their highest levels, assigned similar risk values as major risk factors (tobacco, alcohol, obesity) at their lowest levels. Lifestyles of female participants were less hazardous than those of male participants, as measured with the LRS. In contrast, perception of behavioral health risks was more precise in men. Conclusions: The LRS provides a practical quantification to identify and compare groups with different risk behavior patterns as well as clusters of risky health behaviors in and across populations. It can also support the communication of behavioral health risks.

Share and Cite:

Algurén, B. and Weitkunat, R. (2011) Perception and prevalence of behavioral risk factors: the lifestyle risk scale (LRS). Open Journal of Preventive Medicine, 1, 143-153. doi: 10.4236/ojpm.2011.13019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Weisburger, J. (1998) Worldwide prevention of cancer and other chronic diseases based on knowledge of mechanisms. Mutatution Research, 402, 331-337. doi:/10.1016/S0027-5107(97)00313-8
[2] Blanchard, C.G., Labrecque, M.S., Ruckdeschel, J.C. and Blanchard, E.B. (1988) Information and decision-making preferences of hospitalized adult cancer patients. Social Science & Medicine, 27, 1139-1145. doi:/10.1016/0277-9536(88)90343-7
[3] Barbor, T., Sciamanna, C. and Pronk, N. (2004) Assessing multiple risk behaviors in primary care. Screening issues and related concepts. American Journal of Preventive Medicine, 27, 42-53.
[4] Rimm, E. and Stampfer, M. (2004) Diet, lifestyle, and longevity―The next steps? Journal of the American Medical Association, 292, 1490-1492. doi:/10.1001/jama.292.12.1490
[5] Battegay, E., Gasche, A., Zimmerli, L., Martina, B., Gyr, N. and Keller, U. (1997) Risk factors control and percep- tions of risk factors in patients with coronary heart disease. Blood Press Suppl, 1, 17-22.
[6] Cohn, L., Schydlower, M., Foley, J. and Copeland, R. (1995) Adolescents' misinterpretation of health risk probability expressions. Pediatrics, 95, 713-716.
[7] Tsubono, Y., Koizumi, Y., Nakaya, N., Fujita, K., Takahashi, H., Hozawa, A., Suzuki, Y., Kuriyama, S., Tsuji, I., Fukao, A. and Hisamichi, S. (2004) Health practices and mortality in Japan: combined effects of smoking, drinking, walking and body mass index in the Miyagi Cohort Journal of Epidemiology, 14, S39-45. doi:/10.2188/jea.14.S39
[8] Mao, Y., Pan, S., Wen, S.W. and Johnson, K.C. (2003) Physical inactivity, energy intake, obesity and the risk of rectal cancer in Canada. International Journal of Cancer, 105, 831-837. doi:/10.1002/ijc.11159
[9] Kjaer, M. (2000) Physical inactivity is an underestimated risk factor for development of morbidity and mortality. Scandinavian Journal of Medicine and Science in Sports, 10, 247-248.
[10] Heidrich, J., Wellmann, J., Hense, H.W., Siebert, E., Liese, A.D., Lowel, H. and Keil, U. (2003) Classical risk factors for myocardial infarction and total mortality in the community-13-year follow-up of the MONICA Augsburg cohort study. Z Kardiol, 92, 445-454.
[11] Haveman-Nies, A., De Groot, L., Burema, J., Cruz, J., Osler, M. and van Staveren, W. (2002) Dietary quality and lifestyle factors in relation to 10-year mortality in older Europeans. The SENECA study. American Journal of Epidemiology, 156, 962-968. doi:/10.1093/aje/kwf144
[12] Emberson, J., Shaper, A., Wannemethee, S., Morris, R. and Whincup, P. (2005) Alcohol Intake in middle age and risk of cardiovascular disease and mortality: Accounting for intake variation over time. American Journal of Epidemiology, 161, 856-863. doi:/10.1093/aje/kwi111
[13] Bercault, N., Boulain, T., Kuteifan, K., Wolf, M., Runge, I. and Fleury, J.C. (2004) Obesity-related excess mortality rate in an adult intensive care unit: A risk-adjusted matched cohort study. Critical Care Medicine, 32, 998-1003. doi:/10.1097/01.CCM.0000119422.93413.08
[14] Belloc, N. (1973) Relationship of health practices and mortality. Preventive Medicine, 2, 67-81. doi:/10.1016/0091-7435(73)90009-1
[15] Andersen, L.B. (2004) Relative risk of mortality in the physically inactive is underestimated because of real changes in exposure level during follow-up. American Journal of Epidemiology, 160, 189-195. doi:/10.1093/aje/kwh195
[16] World Health Organization. (1999) Healthy living. What is a healthy lifestyle? Copenhagen, Denmark: World Health Organization Regional Office for Europe. World Wide Web URL:
[17] Meng, L., Maskarinec, G., Lee, J. and Kolonel, L. (1999) Lifestyle factors and chronic diseases: application of a composite risk index. Preventive Medicine, 29, 296-304. doi:/10.1006/pmed.1999.0538
[18] Kim, S., Popkin, B., Siega-Riz, A., Haines, P. and Arab, L. (2004) A cross-national comparison of lifestyle between China and the United States, using a comprehendsive cross-national measurement tool of the healthfulness of lifestyles: The Lifestyle Index. Preventive Medicine, 38, 160-171. doi:/10.1016/j.ypmed.2004.02.003
[19] D'Agostino, B., Grundy, S., Sullivan, L. and Wilson, P. (2001) Validation of the Framingham Coronary Heart Disease Prediction Scores. Results of a Multiple Ethnic Groups Investigation. Journal of the American Medical Association, 286, 180-187. doi:/10.1001/jama.286.2.180
[20] Aktas, M., Ozduran, V., Pothier, C., Lang, R. and Lauer, M. (2004) Global risk scores and exercise testing for predicting all-cause mortality in a preventive medicine program. Journal of the American Medical Association, 292, 1462-1468. doi:/10.1001/jama.292.12.1462
[21] Agresti, A. (1996) Chapter 9.6. Bradley-Terry model for paired preferences, Eds., An introduction to categorial data analysis, John Wiley & Sons, Inc., New York, 246-279.
[22] Klein, M. (2002) Die Conjoint-Analyse. Eine Einführung in das Verfahren mit einem Ausblick auf mogliche sozialwissenschaftliche Anwendungen. ZA-Information 50, 7-45.
[23] Gediga, G. (1998) Kapitel 6. Wahlmodelle für Praferenz-DatenEds., Skalierung. Eine Einführung in die Methodik zur Entwicklung von Testund Meβinstrumenten in den Verhaltenswissenschaften, Lit Verlag, Münster, 90- 106.
[24] SAS Institute. Samples: Bradley. SAS Institute, 2000. World Wide Web URL:
[25] Cronbach, L.J. (1951) Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334.
[26] Bland, M.J. and Altman, D.G. (1997) Cronbach′s alpha. British Medical Journal, 314, 572.
[27] Mokdad, A., Marks, J., Stroup, D. and Gerbering, J. (2004) Actual causes of death in the United States, 2000. Journal of the American Medical Association, 291, 1238-1245. doi:/10.1001/jama.291.10.1238
[28] Keil, U. and Kuulasmaa, K. (1989) WHO MONICA Project: risk factors. American Journal of Epidemiology, 18, S46-S55.
[29] Jaatun, H.J., Sutradhar, S.C. and Dickstein, K. (2004) Comparison of mortality rates after acute myocardial infarction in smokers versus nonsmokers. American Journal of Cardiology, 94, 632-636, A9.
[30] Haustein, K. (2003) Smoking and body weight - a main topic. Deutsche Medizinische Wochenschrift, 128, 2085- 2090.doi:/10.1055/s-2003-42705
[31] Wellmann, J., Heidrich, J., Berger, K., Doring, A., Heuschmann, P.U. and Keil, U. (2004) Changes in alcohol intake and risk of coronary heart disease and all-cause mortality in the MONICA/KORA-Augsburg cohort 1987-97. European Journal of Cardiovascular Prevention & Rehabilitation, 11, 48-55. doi:/10.1097/01.hjr.0000118174.70522.20
[32] San-Jose, B. (2003) Alcohol consumption and mortality: Comparison between countries and meta-analyses. European Journal of Epidemiology, 18, 603-605. doi:/10.1023/A:1024985601188
[33] de Vegt, F., Dekker, J.M., Groeneveld, W.J., Nijpels, G., Stehouwer, C.D., Bouter, L.M. and Heine, R. J. (2002) Moderate alcohol consumption is associated with lower risk for incident diabetes and mortality: the Hoorn Study. Diabetes Research and Clinical Practice, 57, 53-60. doi:/10.1016/S0168-8227(02)00013-X
[34] Youngstedt, S.D. and Kripke, D.F. (2004) Long sleep and mortality: have we been chasing the wrong tail? Sleep Medicine Reviews, 8, 175-176. doi:/10.1016/j.smrv.2004.03.001
[35] Tamakoshi, A. and Ohno, Y. (2004) Self-reported sleep duration as a predictor of all-cause mortality: results from the JACC study, Japan. Sleep, 27, 51-54.
[36] Kripke, D.F. (2003) Sleep and mortality. Psychosomatic Medicine, 65, 74. doi:/10.1097/01.PSY.0000039752.23250.69
[37] Heslop, P., Smith, G.D., Metcalfe, C., Macleod, J. and Hart, C. (2002) Sleep duration and mortality: The effect of short or long sleep duration on cardiovascular and all-cause mortality in working men and women. Sleep Medicine, 3, 305-314. doi:/10.1016/S1389-9457(02)00016-3
[38] Becker, C. and Arnold, W. (2004) Health Promoting behaviors of older Americans versus young and middle aged adults. Educational Gerontology, 30, 835-844. doi:/10.1080/03601270490507277
[39] Burger, M. and Mensink, G. (2003) Bundes-gesund- heitssurvey: Alkohol. konsumverhalten in deutschland. Beitrage zur gesundheitsberichterstattung des bundes, Robert Koch-Institut, 1-16.
[40] Fransson, E., Alfredsson, L., de Faire, U., Knutsson, A. and Westerholm, P. (2003) Leisure time, occupational and household physical activity, and risk factors for cardiovascular disease in working men and women: The WOLF study. Scandinavian Journal of Public Health, 31, 324-333. doi:/10.1080/14034940210165055
[41] Freidl, W., Stronegger, W. and Neuhold, C. (2003) Lebensstile in Wien. Stadt Wien (Hrsg.), 1-320.
[42] Knopf, H., Ellert, U. and Melchert, H. (1999) Sozialschicht und Gesundheit. Gesundheitswesen, 61, S169- 177.
[43] Mensink, G. (2003) Beitrage zur Gesundheitsberichter-stattung des Bundes. Bundes-Gesundheitssurvey: Kor-perliche Aktivitat. Aktive Freizeitgestaltung in Deutsch-land. Robert Koch-Institut, 1-12.
[44] Sánchez-Villegas, A., Delgado-Rodríguez, M., Martínez- González, M., de Irala-Estévez, J. and al., e. (2003) Gender, age, socio-demographic and lifestyle factors associated with major dietary patterns in the Spanish project SUN (Seguimiento Universidad de Navarra). European Journal of Clinical Nutrition, 57, 285-292. doi:/10.1038/sj.ejcn.1601528
[45] Umberson, D. (1987) Family status and health behaviors: social control as a dimension of social integration. Jour nal of Health and Social Behavior, 28, 306-319. doi:/10.2307/2136848
[46] LaPiere, R. (1934) Attitudes versus actions. Social Forces, 13, 230-237. doi:/10.2307/2570339

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.