Ferro- and Antiferromagnetic Aspects of Alternating Spin Systems

DOI: 10.4236/wjcmp.2011.14020   PDF   HTML   XML   3,665 Downloads   6,930 Views   Citations


Using linear spin-wave theory we have investigated the thermal properties of frustrated dimerized Heisenberg ferri- magnetic system with alternating spins and on one- and two-dimensional lattices. At intermediate temperature the susceptibility and the specific heat shows a minimum and a Schottky-like peak respectively. Frustration enhances the antiferromagnetic aspect in the system by causing a left-shift in the peak and the minimum which indicates that the antiferromagnetic behavior overbalance the ferromagnetic one at earlier temperatures. The effect of dimerization is different for the two form of the coupling constants. While the expanded form; , boosts the antiferro- magnetic behavior of the system by making a left-shift of the peak and the minimum, the distance-variable coupling constant; shifts them to the right opposing, for a while, the appearance of the antiferromagnetic aspect. The slope of after the minimum shows that the aspect of ferrimagnetic system with spins (3/2, 1) is more antiferromagnetic and the system with (3/2, 1/2) is ferromagnetic. Free energy and magnetization decreased by increasing dimerization as well as frustration. Both of them scales with PACS numbers: 75.10.Jm, 75.50.Ge.

Share and Cite:

A. Al-Omari, "Ferro- and Antiferromagnetic Aspects of Alternating Spin Systems," World Journal of Condensed Matter Physics, Vol. 1 No. 4, 2011, pp. 137-144. doi: 10.4236/wjcmp.2011.14020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. J. De Vega and F. Woynarivich, “New Integrable Quan- tum Chains Combining Different Kinds of Spins,” Jour- nal of Physics A, Vol. 25, No. 17, 1992, p. 4499. doi:10.1088/0305-4470/25/17/012
[2] For more details see Ref.([14]) and reference therein.
[3] S. K. Pati, S. Remasesha and D. Sen, “Low-Lying Exci- ted States and Low-Temperature Properties of an Alterna- ting Spin-1-Spin-1/2 Chain: A Density-Matrix Renorma- lization-Group Study,” Physical Review B, Vol. 55, No. 14, 1997, p. 8894.
[4] S. K. Pati, S. Ramasesha and D. Sen, “A Density Matrix Renormalization Group Study of Low- Energy Excitations and Low-Temperature Properties of Alternating Spin Sys- tems,” Journal of Physics: Condfensed Matter, Vol. 9, No. 41, 1997, p. 8707. doi:10.1088/0953-8984/9/41/016
[5] C. Wu, B. Chen, X. Dai, Y. Yu and Z.-B. Su, “Schwin- ger-Boson Mean-Field Theory of the Heisenberg Ferri- magnetic Spin Chain,” Physical Review B, Vol. 60, No. 2, 1999, pp. 1057-1063. doi:10.1103/PhysRevB.60.1057
[6] S. Yamamoto and T. Fukui, “Thermodynamic Properties of Heisenberg Ferrimagnetic Spin Chains: Ferromag- netic-Antiferromagnetic Crossover,” Physical Review B, Vol. 57, No. 22, 1998, pp. 14008-14011. doi:10.1103/PhysRevB.57.R14008
[7] S. Yamamoto, T. Fukui, K. Maisinger and U. Schollowo- ck, “Combination of Ferromagnetic and Antiferromag- netic Features in Heisenberg Ferrimagnets,” Journal of Physics: Condfensed Matter, Vol. 10, No. 48, 1998, p. 11033. doi:10.1088/0953-8984/10/48/023
[8] S. Yamamoto and T. Sakai, “Low-Energy Structure of Heisenberg Ferrimagnetic Spin Chains,” Journal of the Physical Society of Japan, Vol. 67, 1998, pp. 3711-3714. doi:10.1143/JPSJ.67.3711
[9] S.-S. Gong, W. Li, Y. Zhao and G. Su, “Magnetism and Thermodynamics of Spin-(1/2, 1) Decorated Heisenberg Chain with Spin-1 Pendants,” Physical Review B, Vol. 81, No. 21, 2010, pp. 214431-214439. doi:10.1103/PhysRevB.81.214431
[10] N. B. Ivanov, “Spin Models of Quasi-1D Quantum Ferri- magnets with Competing Interactions,” Condensed Mat- ter Physics, Vol. 12, No. 3, 2009, pp. 435-447. doi:10.5488/CMP.12.3.435
[11] W Selke and J. Oitmaa, “Monte Carlo Study of Mixed- Spin S = (1/2, 1) Ising Ferrimagnets,” Journal of Physics: Condfensed Matter, Vol. 22, No. 7, 2010, p. 76004. doi:10.1088/0953-8984/22/7/076004
[12] T. Sarkar, V. Pralong, V. Caignaert and B. Raveau, “Com- petition between Ferrimagnetism and Magnetic Frustration in Zinc Substituted YBaFe4O7,” Chemistry of Materials, Vol. 22, No. 9, 2010, p. 2885.
[13] A. Winkler, N. Narayanan, D. Mikhailova, K. G. Bramnik, H. Ehrenberg, H. Fuess, G. Vaitheeswaran, V. Kanchana, F. Wilhelm, A. Rogalev, A. Kolchinskaya and L. Alff, “Magnetism in Re-Based Ferrimagnetic Double Pero- vskites,” New Journal of Physics, Vol. 11, No. 7, 2009, p. 73047. doi:10.1088/1367-2630/11/7/073047
[14] A. Al-Omari and A. H. Nayyar, “Dimerization of Ferri- magnets on Chains and Square Lattices,” Journal of Physics: Condfensed Matter, Vol. 11, No. 2, 1999, p. 465. doi:10.1088/0953-8984/11/2/012
[15] A. Al-Omari and A. H. Nayyar, “The Combined Effect of Frustration and Dimerization in Ferrimagnetic Chains and Square Lattices,” Journal of Physics: Condfensed Matter, Vol. 12, No. 48, 2000, p. 9949. doi:10.1088/0953-8984/12/48/311
[16] M. Takahashi, “Modified Spin-Wave Theory of a Square- Lattice Antiferromagnet,” Physical Review B, Vol. 40, No. 2, 1989, pp. 2494-2501. doi:10.1103/PhysRevB.40.2494
[17] Aiman Al-Omari, “Thermal Properties of Ferrimagnetic Systems,” Accepted for Publication in World Journal of Condensed Matter Physics, August 2011.
[18] S. Yamamoto, “Magnetic Properties of Quantum Ferrima- gnetic Spin Chains,” Physical Review B, Vol. 59, No. 2, 1999, pp. 1024-1027. doi:10.1103/PhysRevB.59.1024
[19] M. Hagirwara, K. Minami, Y. Narumi, K. Tatani and K. Kindo, “Magnetic Properties of a Quantum Ferrimagnet: NiCu(pba)(D2O)3?2D2O,” Journal of the Physical Society of Japan, Vol. 67, 1998, pp. 2209-2211. doi:10.1143/JPSJ.67.2209
[20] K. Maisinger, U. Schollw?ck, S. Brehmer, H.-J. Mikeska, and S. Yamamoto, “Thermodynamics of the (1, 1/2) Fer- rimagnet in Finite Magnetic Fields,” Physical Review B, Vol. 58, No. 10, 1998, pp. 5908-5911. doi:10.1103/PhysRevB.58.R5908
[21] N. Ivanov, J. Richter and U. Schollwock, “Frustrated Quan- tum Heisenberg Ferrimagnetic Chains,” Physical Review B, Vol. 58, No. 21, 1998, pp. 14456-14461. doi:10.1103/PhysRevB.58.14456
[22] S. Yamamoto, T. Fukui and T. Sakai, “Characterization of Ferrimagnetic Heisenberg Chains According to the Con- stituent Spins,” The European Physical Journal B, Vol. 15, No. 21, 2000, pp. 211-219. doi:10.1007/s100510051118
[23] S. Tang and J. E. Hirsch, “Peierls Instability in the Two- Dimensional Half-Filled Hubbard Model,” Physical Re- view B, Vol. 37, No. 16, 1988, pp. 9546-9558. doi:10.1103/PhysRevB.37.9546
[24] A. Feiguin, C. J. Gazza, A. E. Trumper and H. A. Cecca- tto, “Spin-Peierls Dimerization and Frustration in Two- Dimensional Antiferromagnets,” Journal of Physics: Con- dfensed Matter, Vol. 6 No. 34, 1994, p. 503. doi:10.1088/0953-8984/6/34/002
[25] Y. Takushima, A. Koga and N.Kawakami, “Magnetic Double Structure for S = 1 and S = 1/2 Mixed-Spin Sys- tems,” Physical Review B, Vol. 61, No. 22, 2000, pp. 15189-15195. doi:10.1103/PhysRevB.61.15189

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.