Share This Article:

Electrical and Dielectric Characterization of Na0.5Li0.5Zr2(PO4)3

Abstract Full-Text HTML Download Download as PDF (Size:1543KB) PP. 94-103
DOI: 10.4236/ojpc.2011.13013    5,291 Downloads   9,477 Views   Citations


Na0.5Li0.5Zr2(PO4)3has been synthesized by solid state reaction and characterized by thermogravimetry/ differential thermal analyses (TGA/DTA) in the temperature range 300 - 1573 K. X-ray diffraction measure- ments have been carried out to determine the phase of the composition and scanning electron microscopy (SEM) for microstructure evaluation. Impedance spectroscopy at different temperatures (310 - 600 K) and frequencies (300 kHz - 1 GHz) have been carried out and the dielectric relaxation behaviour was determined under the same conditions. A dc conductivity maximum value of 0.25 S/m at 580 K was observed. However, the mixed alkali effect was not observed. The material exhibited relaxation behaviour with a peak in the dielectric permitivity at 469 K. There were no structural transformations observed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

U. Ahmadu, K. Isah, A. Musa and T. Salkus, "Electrical and Dielectric Characterization of Na0.5Li0.5Zr2(PO4)3," Open Journal of Physical Chemistry, Vol. 1 No. 3, 2011, pp. 94-103. doi: 10.4236/ojpc.2011.13013.


[1] B. Angadi, V. M. Jali, M. T. Lagare, N. S. Kini, A. M. Umarji, R. Kumar, S. K. Arora and D. Kanjilal, “50 MeV Li3+ Irradiation Effects on the Thermal Expansion of Ca1_xSrxZr4P6O24,” Nuclear Instruments and Methods in Physics Research B, Vol. 187, No. 1, 2002, pp. 87-94. doi:10.1016/S0168-583X(01)00847-3
[2] S. Kormaneni, E. Lenain and R. Roy, “Thermal Expan- sion of NH4Zr2(PO4)3,” Journal of Materials Science Letters, Vol. 5, No. 1, 1986, pp. 1-3. doi:10.1007/BF01671415
[3] I. W. Donald, B. L. Metcalfe and R. N. J. Taylor, “The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses,” Journal of Materials Science, Vol, 32, No. 22, 1997, pp. 5851-5887. doi:10.1023/A:1018646507438
[4] N. Anantharamulu, G. Prasad and M. Vithal, “Preparation, Characterization and Conductivity Studies of Li3–2xAl2–x Sbx(PO4)3,” Bulletin of Materials Science, Vol. 31, No. 2, 2008, pp.133-138. doi:10.1007/s12034-008-0023-3
[5] T. ?alkus, A. Dindune, Z. Kanepe, J. Ronis, A. Ka?eonis and A. E. Orliukas, “Synthesis Structure and Electric Properties of L1+xScxZ2-x(PO4)3(x = 0.1,0.2,0.3),” Lithua- nian Journal of Physics, Vol. 46, 2006, pp. 361-366. doi:10.3952/lithjphys.46314
[6] H. Kang and N. Cho, “Phase Formation, Sintering Behavior, and Electrical Characteristics of NASICON Com- pounds,” Journal of Materials Science, Vol. 34, No. 20, 1999, pp. 5005-5013. doi:10.1023/A:1004784327302
[7] F. E. Mouahid, M. Zahir, P. M. Maldonado-Manso, S. Bruque, E. R. Losilla, M. A. G. Aranda, A. Rivera, C. Leona and J. Santamaria, “Na-Li Exchange of Na1+xTi2-x Alx(PO4)3(0.6 ≤ x ≤ 0.9) NASICON Series: A Rietveld and Impedance Study,” Journal of Materials Chemistry, Vol. 11, 2001, pp. 3258-3263. doi:10.1039/b102918p
[8] K. Oda, S. Takase and Y. Shimizu, “Preparation of High Conductive Lithium Ceramic,” Materials Science Forum, Vol. 544-545, 2007, pp. 1033-1036. doi:10.4028/
[9] P. S. Tantri, K. Greetha, A. M. Umarji and S. K. Rama- sesha, “Thermal Expansion Behaviour of Barium and Strontium Zirconium Phosphates,” Bulletin of Materials Science, Vol. 23, No. 6, 2000, pp. 491-499. doi:10.1007/BF02903889
[10] V. I. Petkov, A. I. Orlova, I. G. Trucbach, Y. A. Asabina, V. T. Demarin and V. S. Kurazhkovskaya, “Immobilization of Nuclear Waste Materials Containing Different Alkali Elements in Single-Phase NZP-Based Ceramics,” Czech Journal of Physics, Vol. 53, No. 1, 2003, pp. A639 -A648. doi:10.1007/s10582-003-0082-z
[11] A. H. Naik, N. V. Thakkar, S. R. Darwatkar, K. D. S. Mudher and V. V. Venagopal, “Microwave Assisted Low Temperature Synthesis of Sodium Zirconium Phosphate (NaZr2(PO4)3),” Journal of Thermal Analysis and Calo- rimetry, Vol. 76, 2004, pp. 707-713.
[12] A. H. Naik, S. S. Deb, A. B. Chalke, M. K. Saxena, K. L. Ramakumar, V. Venugopal and S. R. Dharwadkar, “Microwave-Assisted Low Temperature Synthesis of So- dium Zirconium Phosphate (NZP) and the Leachability of Some Selected Fission Products Incorporated in Its Struc- ture―A Case Study of Leachability of Caesium,” Journal of Chemical Science, Vol. 122, No. 1, 2010, pp. 71-82. doi:10.1007/s12039-010-0009-8
[13] H. Aono, “Studies on Li+ Ionic Conducting Solid Elec- trolyte Composed of Nasicon-Type Structure,” Ph.D. Dissertation, Osaka University, Osaka, 1994.
[14] J. Kawamura, N. Kuwata, K. Hattori and J. Misuzaki, “Ionic Transport in Nanohetergenous Materials,” Reports of the Institute of Fluid Science, Vol. 19, 2007, pp. 1-2.
[15] J. S. Lee, C. M. Chang, Y. I. Lee, J. H. Lee and S. H. Hong, “Spark Plasma Sintering (SPS) of NASICON Ceramics,” Journal of American Ceramic Society, Vol. 87, No. 2, 2004, pp. 305-307. doi:10.1111/j.1551-2916.2004.00305.x
[16] E. Kazakevi?ius, A. F. Orliukas, A. L. Ke?ionis, A. L. Jucius, A. Dindune, Z. Kanepe and J. Ronis, “Synthesis and Electrical Properties of Li1+xZr2-2xAlxTix(PO4)3,” Materials Science (Med?iagotyra), Vol. 10, 2004, p. 305.
[17] P. Khatri, B. Behera, V. Srivanus and R. N. P. Choudhary, Complex Impedance Spectroscopic Properties of Ba3V2 O8 Ceramics,” Research Letters in Materials Science, 2008, p. 3.
[18] C. J. Leo, G. V. S. Rao and B. V. R. Chowdari, “Fast Ion Conduction in the Li-Analogues of Nasicon, Li1+x [(Ta1-2xGex)Al](PO4)3,” Journal of Materials Chemistry, Vol. 12, No. 6, 2002, pp.1848-1853. doi:10.1039/b110863h
[19] D. A. Woodcock, P. Lightfoot and R. I. Smith, “Powder Neutron Diffraction Studies of Three Low Thermal Ex- pansion Phases in the NZP Family: K0.5Nb0.5Ti1.5- (PO4)3, Ba0.5Ti2(PO4)3 and Ca0.25Sr0.25-Zr2(PO4)3,” Journal of Materials Chemistry, Vol. 9, No. 10, 1999, pp. 2631-2636. doi:10.1039/a903489g
[20] A. Ke?ionis, E. Kazakevi?ius, T. ?alkus and A. Orliukas, “Broadband High Frequency Impedance Spectrometer with Working Temperatures up to 1200 K,” Solid State Ion, Vol. 188, 2010, pp. 110-113.
[21] V. I. Pet’kov, E. A. Asabina, A. V. Markin and N. N. Smirnova, “Synthesis, Characterization and Thermodyna- mic Data of Compounds with NZP Structure,” Journal of Thermal Analysis and Calorimetry, Vol. 91, 2008, pp. 157-158.
[22] D.-M. Zhu, F. Luo, Z.-L. Xie and W.-C. Zhou, “Phase Formation and Electrical Characteristics of NASICON Ceramics,” Transactions of Nonferrous Metal Society of China, Vol. 17, 2007, pp. s1156-s1159.
[23] U. Ahmadu, A. O. Musa, S. A. Jonah and N. Rabiu, “Synthesis and Thermal Characterization of NZP Com- pounds Na1-xLixZr2(PO4)3 (x = 0.00-0.75),” Journal of Thermal Analysis and Calorimetry, Vol. 101, 2010, pp. 175-179. doi:10.1007/s10973-010- 0679-y
[24] C. S. Sunandana and P. S. Kumar, “Theoretical App- roaches to Superionic Conductivity,” Bulletin of Ma- terials Science, Vol. 27, No. 1, 2004, pp. 1-17. doi:10.1007/BF02708477
[25] J. Bisquert, V. Halpern and F. Henn, “Simple Model for AC Ionic Conduction in Solid,” Journal of Chemical Physics, Vol. 122, No. 15, 2005, pp. 151101-1-151101-4. doi:10.1063/1.1896359
[26] A. Gosh, “AC Conduction in Iron Bismuthate Glassy Semiconductors,” Physical Review B, Vol. 42, No. 2, 1990, pp. 1388-1393. doi:10.1103/PhysRevB.42.1388
[27] A. Jarboui, A. Ben Rhaeim, F. Hilel, K. Guidara and M. Gargouri, “NMR Study and Electrical Properties Inves- tigation of Zn2P2O7,” Ionics, Vol. 16, No. 1, 2010, pp. 67- 73. doi:10.1007/s11581-009-0333-5
[28] E. E. Shaisha, Sh. F. El-Desouki, I. Shaltout and A. A. Bahgat, “Electrical Relaxation in Mixed Alkali Bi2O3- K2O-Li2O-Fe2O3 Glasses,” Journal of Materials Science and Technology, Vol. 22, 2006, pp. 701-707.
[29] I. Vitioo, “Synthesis, Structure, Conductivity and Ele- ctrode Properties for Some Double Diphosphates, Sili- cates and Lithium Manganese Oxides,” Ph.D. Disser- tation, Institute of Solid State Physics, University of Latvia, Riga, 1999.
[30] Liu J. J., C.-G. Duan, W.-G. Yin, W. N. Mei, R. W. Smith and J. R. Smith, “Dielectric Permittivity and Electric Modulus in Bi2Ti4O11,” Journal of Chemical Physics, Vol. 119, No. 5, 2003, pp. 2812-2819. doi:10.1063/1.1587685
[31] M. V. N. D. Sharma, A. V. Sarma and R. B. Rao, “Electrical Characterization and Relaxation Behavior of Lithium-Indium-Phosphate Glasses via Impedance Spec- troscopy,” Turkish Journal of Physics, Vol. 33, 2009, pp. 87-100.
[32] T. R. Choudhary and A. Basu, “Ac Conductivity and Dielectric Relaxation Studies of Sandstone―A Corre- lation with Its Thermoluminescence,” Journal of Ovonic Research, Vol. 4, 2008. pp. 35-42.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.