Spontaneous Spin Polarization of Electrons by Diluted Magnetic Heterostructures

Abstract Full-Text HTML XML Download Download as PDF (Size:754KB) PP. 1272-1279
DOI: 10.4236/jmp.2011.211157    4,561 Downloads   8,392 Views   Citations

ABSTRACT

The spin dependent electron transmission phenomenon in a diluted resonant semiconductor heterostructure is employed theoretically to investigate the output transmission current polarization at zero magnetic field. Transparency of electron transmission is calculated as a function of electron energy and the well width, within the one electron band approximation along with the spin orbit interaction. Enhanced spin-polarized resonant tunneling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level is observed. We predict that a spin-polarized current spontaneously emerges in this heterostructure and we estimate theoretically that the polarization can reach 40%. This effect could be employed in the fabrication of spin filters, spin injectors and detectors based on non-magnetic semiconductors.

Cite this paper

C. Lee and A. Peter, "Spontaneous Spin Polarization of Electrons by Diluted Magnetic Heterostructures," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1272-1279. doi: 10.4236/jmp.2011.211157.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, “Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure,” Nature, Vol. 402, 1999, pp.790-792. doi:10.1038/45509
[2] J. A. Nesteroff, Y. V. Pershin and V. Privman, “Polarization of Nuclear Spins from the Conductance of Quantum wire,” Physical Review B, Vol. 69, 2004, pp. 121306(R).
[3] P. St?eda and P ?eba, “Antisymmetric Spin Filtering in One-Dimensional Electron Systems with Uniform Spin-Orbit Coupling,” Physical Review Letters, Vol. 90, No. 25, 2003, p. 256601. doi:10.1103/PhysRevLett.90.256601
[4] Y. V. Pershin and C.Piermarocchi, “Relaxation of Conduction Electron Spins in Semiconductors,” Applied Physics Letters, Vol. 86, No. 21, 2005, pp. 212107-1-3. doi:10.1063/1.1935747
[5] G. A. Prinz, “Spin-Polarized Transport,” Physics Today, Vol. 48, No. 4, 1995, p. 58.
[6] G. A. Prinz, “Magnetoelectronics,” Science, Vol. 282, 1998, pp. 1660-1663. doi:10.1126/science.282.5394.1660
[7] D. Loss. D and D. P. DiVincenzo, “Quantum Computation with Quantum Dots,” Physical Review A, Vol. 57, No. 20, 1998, pp. 120-123.
[8] B. E. Kane, “A silicon-based nuclear spin quantum computer,” Nature, Vol. 393, 1998, pp. 133-137. doi:10.1038/30156
[9] S. Das Sarma, “Spintronics,” American Science, Vol. 89, 2001, pp. 516.
[10] D. D. Awschalom, M. E. Flatte and N. Samarth, “Spintronics,” Scientific American, Vol. 286, 2002, pp. 66-73. doi:10.1038/scientificamerican0602-66
[11] H. Akinaga and H. Ohno, “Semiconductor Spintronics,” IEEE Transactions on Nanotechnology, Vol. 1, No. 1, 2002, pp. 19-31. doi:10.1109/TNANO.2002.1005423
[12] J. C. Egues, “Spin-Dependent Perpendicular Magnetotransport through a Tunable ZnSe/Zn1-xMnxSe Heterostructure,” Physical Review Letters, Vol. 80, No. 20, 1998, pp. 4578-4581. doi:10.1103/PhysRevLett.80.4578
[13] E. Souto, O. A. C. Nunes, F. M. S. Lima, D. A. Agrello and A. L. A. Fonseca, “Spin Waves Amplification in Antiferromagnetic Semiconductors Stimulated by Infrared Laser Field,” Physical Review B, Vol. 68, No. 12, 2003, p. 125317. doi:10.1103/PhysRevB.68.125317
[14] A. Voskoboynikov, S. S. Liu, C. P. Lee and O. Tretyak, “Spin-Dependent Tunneling in Double-Barrier Semiconductor Heterostructures,” Physical Review B, Vol. 59, No. 19, 1999, pp. 12514-12520.
[15] A. de Andrada e Silva and G. C. La Rocca, “Electron-Spin Polarization by Resonant Tunneling,” Physical Review B, Vol. 59, No. 24, 1999, pp. 15583-15585. doi:10.1103/PhysRevB.59.R15583
[16] V. I. Perel’, S. A. Tarasenko, I. N. Yassievich, S. D. Ganichev, V. V. Bel’kov and W. Prettl, “Spin-Dependent Tunnelling through a Symmetric Barrier,” Physical Review B, Vol. 67, No. 20, 2003, p. 201304. doi:10.1103/PhysRevB.67.201304
[17] A. J. Peter, “Electron-Spin Polarization on a Non-Magnetic Heterostructure,” Phyics Letters A, Vol. 372, No. 31, 2008, pp. 5239-5242. doi:10.1016/j.physleta.2008.06.025
[18] Q.-F. Sun and X. C. Xie, “Bias-Controllable Intrinsic Spin Polarization in a Quantum Dot,” Physical Review B, Vol. 73, No. 23, 2006, p. 235301. doi:10.1103/PhysRevB.73.235301
[19] Q.-F. Sun and X. C. Xie, “Spontaneous Spin-Polarized Current in a Nonuniform Rashba Interaction System,” Physical Review B, Vol. 71, No. 15, 2005, p. 155321. doi:10.1103/PhysRevB.71.155321
[20] M. M. Glazov, P. S. Alekseev, M. S. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko and I. N. Yassievich, “Spin- dependent Resonant Tunneling in Symmetrical Double- Barrier Structure,” Physical Review B, Vol. 71, No. 15, 2005, p. 155313. doi:10.1103/PhysRevB.71.155313
[21] V. I. Perel, S. A. Tarasenko, I. N. Yassievich, S. D. Ganichev, V. V. Bel’kov and W. Prettl, “Spin-Dependent Tunneling through a Symmetric Semiconductor Barrier,” Physical Review B, Vol. 67, No. 20, 2003, p. R201304. doi:10.1103/PhysRevB.67.201304
[22] G. Dresselhaus, “Spin-Orbit Coupling Effects in Zinic Blende Structures,” Physical Review, Vol. 100, No. 2, 2005, pp. 580-586. doi:10.1103/PhysRev.100.580
[23] Yu. A. Bychkov and E. I. Rashba, “Oscillatory Effects and the Magnetic Susceptibility of Carriers in Inversion Layers,” Journal of Physics C, Vol. 17, No. 33, 1984, p. 6093.
[24] A. K. Ghatak, “Basic Quantum Mechanics,” Macmillan Ind. Ltd, India, 2002, p. 242.
[25] E. O. Kane, “Tunneling Phenomenon in Solids,” Plenum, New York, 1969.
[26] A. Voskoboynikov, S. S. Liu, C. P. Lee and O. Tretyak., “Spin-Polarized Electronic Current in Resonant Tunneling Heterostructures,” Journal of Applied Physics, Vol. 87, No. 1, 2000, pp. 387-391. doi:10.1063/1.371872
[27] J. C. Egues, “Spin-Dependent Perpendicular Magnetotransport through a Tunable ZnSe/Zn1-xMnxSe Heterostructure: A Possible Spin Filter?” Physical Review Letters, Vol. 80, No. 20, 1998, pp. 4578-4581. doi:10.1103/PhysRevLett.80.4578
[28] K. C. Hall, W. H. Lau, K. Gündo?du, E. Michael Flatteé and T. F. Boggess, “Nonmagnetic Semiconductor Spin Transistor,” Applied Physics Letters, Vol. 83, No. 14, 2003, p. 2937.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.