Solid State Reactions in Cr2O3-ZnO Nanoparticles Synthesized by Triethanolamine Chemical Precipitation


The present work reports the preliminary results about solid state reactions of Cr-ZnO solid solutions and ZnCr2O4 nanometric particles obtained with triethanolamine (TEA). Different compositions were prepared from 0.65 to 33.3 at % chromium, the last one corresponding to ZnCr2O4 cubic spinel composition. Fourier Transform Infrared Spectroscopy (FTIR) together with X-ray diffraction (XRD) patterns of powders with Cr3+ between 0.65 and 16.0 at % were assigned to Cr-ZnO solid solution due to the only presence of ZnO structure, FTIR spectra indicating that Cr-O bonding exists even if there was no presence of ZnCr2O4. With low chromium atomic percent, lattice parameters increase, but as the chromium content exceeds of 3 at %, there is basically no further expansion of the cell. From Williamson-Hall and Rietveld methods the lattice dimensions were assigned to chromium incorporation in ZnO structure and the lattice contraction by particle size refinement. After annealing all samples from 0.65 to 16.0 at % at 400°C in oxygen, the analysis showed that nanoparticles of Cr-ZnO solid solution still remain.

Share and Cite:

I. Esparza, M. Paredes, R. Martinez, A. Gaona-Couto, G. Sanchez-Loredo, L. Flores-Velez and O. Dominguez, "Solid State Reactions in Cr2O3-ZnO Nanoparticles Synthesized by Triethanolamine Chemical Precipitation," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1584-1592. doi: 10.4236/msa.2011.211212.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Brock, M. Groteklaes and P. Mischke, “European Coatings Handbook,” Vincentz Verlag, Hannover, 2000.
[2] J. Uhm, M. Shin, Z. Jiang and J. Chung, “Selective Oxidation of H2S to Elemental Sulfur over Chromium Oxide Catalysts,” Applied Catalysis B: Environment, Vol. 22, No. 4, 1999, pp. 293-303. doi:10.1016/S0926-3373(99)00057-0
[3] M. Bkjker, J. Bastiaens, E. Draaisma, L. de Jong, E. Sourty, S. Saied and J. Sullivan, “The Development of a Thin Cr2O3 Wear Protective Coating for the Advanced Digital Recording System,” Tribology International, Vol. 32, No. 4-6, 2003, pp. 227-233. doi:10.1016/S0301-679X(02)00191-3
[4] Y. Shimizu, S. Kusano, et al., “Oxigen Sensing Properties of Spinel-Type Oxides for Stoichiometric Air/Fuel Combustion Control,” Journal of the American Ceramic Society, Vol. 73, No. 4, 1990, pp. 818-824. doi:10.1111/j.1151-2916.1990.tb05120.x
[5] M. Shinoda, T. Nishide, Y. Sawada, M. Hosaka and T. Matsumoto, “Stability of Sputter Deposited ZnO:Cr Films Against Acids,” Japanese Journal of Applied Physics, Vol. 32, Part 2, No.10B, 1993, pp. L1565-L1567.
[6] V. Sharma, et al., “Synthesis and Characterization of Nanocrystalline Zn1-xMO (M = Ni, Cr) Thin Films for Efficient Photoelectrochemical Splitting of Water,” International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 4280-4290. doi:10.1016/j.ijhydene.2011.01.004
[7] W. Jin, I. Lee, A. Kompch, U. Dorfler and M. Winterer, “Chemical Vapor Synthesis and Characterization of Chromium Doped Zinc Oxide Nanoparticles,” Journal of the European Ceramic Society, Vol. 27, No.13-15, 2007, pp. 4333-4337. doi:10.1016/j.jeurceramsoc.2007.02.152
[8] Z. Marinkovic, L. Mancic, P. Vulic and O. Milosevic, “Microstructural Characterization of Mechanically Activated ZnO-Cr2O3 System,” Journal of the European Ceramic Society, Vol. 25, No. 12, 2005, pp. 2081-2084. doi:10.1016/j.jeurceramsoc.2005.03.085
[9] J. Merchant and M. Cociver, “Preparation and Doping of Zinc Oxide Using Spray Pyrolysis,” Chemistry of Materials, Vol. 7, No. 9, 1995, pp. 1742-1749. doi:10.1021/cm00057a026
[10] A. Ennaqadi, M. Khaldi, A. Roy, C. Forano and J. Besse, “XFAS Study of Structural Evolution during Calcination of Two Zinc-Chromium Based Lamellar Double Hydroxides,” Journal de Physique 4, Vol. 7, No. C2, 1997, pp. 1231-1232.
[11] A. Sen and P. Pramanik, “Preparation of Nano-Sized Calcium, Magnesium and Zinc Chromite Powders through Metallo-Organic Precursor Solutions,” Journal of Material Synthesis and Processing, Vol. 10, No. 3, 2002, pp 107-111. doi:10.1023/A:1021980211341
[12] Q. Zhongl and E. Matijevik, “Preparation of Uniform Zinc Oxide Colloids by Controlled Double-Jet Precipitation,” Journal of Material Chemistry, Vol. 6, No. 3, 1996, pp. 443-448. doi:10.1039/jm9960600443
[13] M. Andres-Verges and C. J. Serna, “Morphological Characterization of ZnO Powders by x-ray and IR Spectroscopy,” Journal of Materials Science, Vol. 7, No.4, 1998, pp. 970-972.
[14] T. Ivanova, et al., “Structural Transformations and their Relation to the Optoelectronic Properties of Chromium Oxide Thin Films,” Journal of Physics: Conference Series, Vol. 13, 2008, pp. 12030-12034. doi:10.1088/1742-6596/113/1/012030
[15] J. Matthies, L. Lutterotti and H. Wenk, “Advances in Texture Analysis from Diffraction Spectra,” Journal of Applied Crystalography, Vol. 30, No. 1, 1997, pp. 31-42. doi:10.1107/S0021889896006851
[16] G. K. Williamson and W. H. Hall, “X-ray Line Broadening from Filed Aluminum and Wolfram,” Acta Metallurgica, Vol. 1, No. 1, 1953, pp. 22-31. doi:10.1016/0001-6160(53)90006-6
[17] A. M. Gadalla, “Compatible Phases in the System Zinc Oxide-Copper (II) Oxide-Copper-Chromium (III) Oxide,” Industrial Engineering and Chemistry Fundamentals, Vol. 23, No. 4, 1984, pp. 436-440. doi:10.1021/i100016a010
[18] C. Giacovazzo, “Fundamentals of Crystallography,” Oxford University Press, Oxford, 2000.
[19] C. Henry, “Size Effects on Structure and Morphology of Free or Supported Nanoparticles,” in: C. Brechignac, P. Houdy and M. Lahmani, Eds., Nanomaterials and Nanochemistry, Springer-Verlag, Berlin, 2007, pp. 1-34.
[20] J. Woltersdorf, A. S. Nepijko and E. Pippel, “Dependence of Lattice Parameters of Small Particles on the Size of the Nuclei,” Surface Science, Vol. 106, No. 1-3, 1981, pp. 64-69. doi:10.1016/0039-6028(81)90182-5
[21] W. Lojkowski, et al., “Solvothermal Synthesis of Nanocry-Stalline Zinc Oxide Doped with Mn2+, Ni2+, Co2+ and Cr3+ Ions,” Journal of Nanoparticle Research, Vol. 11, No. 8, 2009, pp. 1991-2002. doi:10.1007/s11051-008-9559-9
[22] H. Schmalzried, “Chemical Kinetics of Solids,” VCH, Berlin, 1995. doi:10.1002/9783527615537
[23] T. Ishii, R. Furuichi and Y. Hara, “Thermoanalytical Study of the Solid State Reactions in MgO-Cr2O3 and ZnO-Cr2O3 Systems,” Journal of Thermal Analysis and Calorimetry, Vol. 11, No. 1, 1977, pp. 71-80. doi:10.1007/BF02104085
[24] T. Konvicka, P. Mosner and Z. Solc, “Investigation of the Non-Isothermal Kinetics of the Formation of ZnFe2O4 and ZnCr2O4,” Thermal Analysis and Calorimetry, Vol. 60, No. 2, 2000, pp. 629-640. doi:10.1023/A:1010115625642

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.