Approximate Compositional Values and Tissue Fatty Acid Profiles of Nile Tilapia (Oreochromis niloticus L.) Fed Azolla-Diets in Earthen Ponds
Youssouf Abou, Emile Didier Fiogbé, Yves Beckers, Jean-Claude Micha
DOI: 10.4236/fns.2011.29131   PDF    HTML     7,440 Downloads   12,141 Views   Citations


The approximate general composition and the fatty acid profile of Nile tilapia fed Azolla-diets in ponds were studied for 90 days. Six isonitrogenous (29.2% CP) and isoenergetic (16.9 kJ·g>sup>-1) diets were formulated to contain 0% (A0), 10% (A10), 20% (A>sub>20), 30% (A30), 40% (A40) and 50% (A50) of Azolla meal (AM), as partial fish meal (FM) substitutes. Diet A0 without AM served as a control. Fish growth decreased as AM level exceeded 20% in diets (P < 0.05). Dry matter and crude protein showed no significant differences (P > 0.05). Crude lipid was significantly lower in fish fed A50 and significant differences were also found in crude ash (P < 0.05). Linolenic acid (LLA) decreased significantly when AM level in diets increased (P < 0.05). In contrast, arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) showed significantly higher values in fish fed high AM (P < 0.05). The n - 3/n - 6 ratio ranged from 0.35 to 0.49, with values being significantly higher in fish fed A20, A30 and A50. High level of the fern reduces growth without negatively affecting fatty acid in fish. Fish PUFA, especially the (n - 3) fatty acids, are affected positively, even when fed 50% AM, which is good for the quality of the fish produced in regard to the benefits for the health of consumers.

Share and Cite:

Y. Abou, E. Fiogbé, Y. Beckers and J. Micha, "Approximate Compositional Values and Tissue Fatty Acid Profiles of Nile Tilapia (Oreochromis niloticus L.) Fed Azolla-Diets in Earthen Ponds," Food and Nutrition Sciences, Vol. 2 No. 9, 2011, pp. 964-973. doi: 10.4236/fns.2011.29131.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] IFFO, “Fishmeal Industry Overview,” International Fishmeal and Fish Oil Organization, St. Albans, 2006.
[2] FAO, “The State of the World Fisheries and Aquaculture,” Food and Agriculture Organization, Rome, 2006, p. 134.
[3] V. Leonard, C. Breyne, J.-C. Micha and Y. Larondelle, “Digestibility and Transit Time of Azolla Filiculoides Lamarck in Oreochromis aureus (Steindachner),” Aquaculture Research, Vol. 29, No. 3, 1998, pp. 159-165. doi:10.1111/j.1365-2109.1998.tb01120.x
[4] E. A. Fasakin, A. M. Balogun and O. A. Fagbenro, “Evaluation of Sun-Dried Water Fern, Azolla africana, and Duckweed, Spirodela polyrrhiza, in Practical Diets for Nile Tilapia, Oreochromis niloticus, Fingerlings,” Jour- nal of Applied Aquaculture, Vol. 11, No. 4, 2001, pp. 83- 92. doi:10.1300/J028v11n04_09
[5] E. D. Fiogbé, J.-C. Micha and C. Van Hove, “Use of a Natural Aquatic Fern, Azolla microphylla, as a Main Component in Food for Omnivorous-Phytoplanktonophagous Tilapia, Oreochromis niloticus L.,” Journal of Applied Ichthyology, Vol. 20, No. 6, 2004, pp. 517-520. doi:10.1111/j.1439-0426.2004.00562.x
[6] Y. Abou, E. D. Fiogbé and J.-C. Micha, “A Preliminary Assessment of Growth and Production of Nile Tilapia, Oreochromis niloticus L., Fed Azolla-Based-Diets in Earthen Ponds,” Journal of Applied Aquaculture, Vol.19, No. 4, 2007, pp. 55-69. doi:10.1300/J028v19n04_03
[7] Y. Abou, E. D. Fiogbé and J.-C. Micha, “Effects of Stocking Density on Growth, Yield, and Profitability of Farming Nile Tilapia, Oreochromis niloticus L., Fed Azolla-Diet, in Earthen Ponds,” Aquaculture Research, Vol. 38, No. 6, 2007b, pp. 595-604. doi:10.1111/j.1365-2109.2007.01700.x
[8] T. Ohaus, “Pen-Reared vs. Wild Salmon-Nutrition, Safety and Omega-3,” Pacific Fisheries, Vol. 10, No. 6, 1989, pp. 51-59.
[9] G. M. Pigott, “The Need to Improve Omega-3 Content of Cultured Fish,” World Aquaculture, Vol. 20, 1989, pp. 63-68.
[10] F. Thais and R. A. K. Stahl, “Effect of Dietary Fish Oil on Renal Function in Immune Mediated Glomerular Injury,” Proceedings of AOAC Short Course on Polyunsaturated Fatty Acids and Eicosanoids, American Oil Chemists Society, Champaign, 1987, pp. 123-126.
[11] D. Bates, N. Cartlidge, J. M. French, M. J. Jackson, S. Nightingale and D. A. A Shaw, “Double-Blinded Controlled Trial of Long Chain n-3 Polyunsaturated Fatty Acids in the Treatment of Multiple Sclerosis,” Journal of Neurological and Neurosurgical Psychiatry, Vol. 52, No. 1, 1989, pp. 18-22. doi:10.1136/jnnp.52.1.18
[12] A. Kefatos, A. Diacatou, G. Voukiklaris, N. Nikolakakis, J. Vlachonikolis, D. Kounali, G. Mamalakis and A. S. Dontas, “Heart Disease Risk Factor Status and Dietary Changes in the Cretan Population over the Past 30 Years: The Seven Country Study,” American Journal of Clinical Nutrition, Vol. 65, No. 5, 1997, pp. 1882-1886.
[13] J. G. Maina, R. M. Beames, P. N. Mbugua, G. Iwama and S. M. Kisia, “Partial Replacement of Fishmeal with Sunflower Cake and Corn Oil in Diets for Tilapia Oreochromis niloticus (Linn): Effect on Whole Body Fatty Acids,” Aquaculture Research, Vol. 34, No. 8, 2003, pp. 595-608. doi:10.1046/j.1365-2109.2003.00848.x
[14] T. Takeuchi, J. Lu, G. Yoshizaki and S. Satoh, “Effect on the Growth and Body Composition of Juvenile Tilapia Oreochromis niloticus Fed Raw Spirulina,” Fisheries Science, Vol. 68, No. 1, 2002, pp. 34-40. doi:10.1046/j.1444-2906.2002.00386.x
[15] K. C. Williams, B. D. Paterson, C. G. Barlow, A. Ford and R. Roberts, “Potential of Meat Meal to Replace Fish Meal in Extruded Dry Diets for Barramundi, Lates calcarifer (Bloch). II. Organoleptic Characteristics and Fatty Acid Composition,” Aquaculture Research, Vol. 34, No. 1, 2003, pp. 33-42. doi:10.1046/j.1365-2109.2003.00786.x
[16] A. Awa?ss, P. Kestemont and J.-C. Micha, “Fatty Acid Profiles of Two Freshwater Fish Larvae (Gudgeon and Perch) Reared with Brachionus calyciflorus Pallas (rotifer) and/or Dry Diet,” Aquaculture Research, Vol. 27, 1996, pp. 651-658.
[17] G. Drillet, N. O. G. J?rgensen, T. F. S?rensen, H. Raml?v and B. W. Hansen, “Biochemical and Technical Observations Supporting the Use of Copepods as Live Feed Organisms in Marine Larviculture,” Aquaculture Research, Vol. 37, No. 8, 2006, pp. 756-772. doi:10.1111/j.1365-2109.2006.01489.x
[18] Ch. Mélard, “Bases Biologiques de L’élevage Intensif du Tilapia du Nil O. niloticus,” Cahiers d’Ethologie Appliquée, Vol. 5, No. 3, 1986, pp. 1-224.
[19] V. Leonard, “Use of an Aquatic Fern (Azolla filiculoides) in Two Species of Tropical Fish (Oreochromis niloticus and Tilapia rendalli),” Ph.D. Thesis, Catholic University of Louvain, Louvain-la-Neuve, 1997.
[20] A. G. J. Tacon, “Standard Methods for the Nutrition and Feeding of Farmed Fish and Shrimp,” Argent Laboratories Press, Washington, DC, 1990, 454 pp.
[21] J. Folch, M. Lees and G. H. S. Sloane-Stanley, “A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,” Journal of Chemistry, Vol. 226, 1957, pp. 497-509.
[22] AOAC, “Official Methods of Analysis,” 15th Edition, Association of Official Analytical Chemists, Arlington, 1990.
[23] W. W. Christie, “Lipid Analysis,” Pergamon, Oxford, 1982, p. 207.
[24] H. O. Hartley, “Smallest Composite Designs for Quadratic Response Surface,” Biometrics, Vol. 15, No. 4, 1959, pp. 611-624. doi:10.2307/2527658
[25] D. B. Duncan, “Multiple Range and Multiple F-Tests,” Biometrics, Vol. 11, 1955, pp. 1-42. doi:10.2307/3001478
[26] National Research Council (NRC), “Nutrient Requirements for Fish,” National Academy Press, Washington DC, 1993.
[27] A. F. M. El-Sayed, “Effects of Substituting Fish Meal with Azolla pinnata in Practical Diets for Fingerling and Adult Nile Tilapia Oreochromis niloticus (L),” Aquaculture and Fisheries Management, Vol. 23, No. 2, 1992, pp. 167-173.
[28] E. A. Fasakin, A. M. Balogun and B. E. Fasuru, “Use of Duckweed, Spirodela polyrrhiza L. Schleiden, as a Protein Feedstuff in Practical Diets for Tilapia, Oreochromis niloticus L.,” Aquaculture Research, Vol. 30, No. 5, 1999, pp. 313-318. doi:10.1046/j.1365-2109.1999.00318.x
[29] C. R. S. Dato-Cajegas and A. Yakupitiyage, “The Need for Dietary Mineral Supplementation for Nile Tilapia, Oreochromis niloticus, Cultured in a Semi-Intensive System,” Aquaculture, Vol. 144, No. 1-3, 1996, pp. 227-237. doi:10.1016/S0044-8486(96)01292-6
[30] T. Watanabe, T. Takeuchi, A. Murakami and C. Ogino, “The Availability to Tilapia nilotica of Phosphorus in White Fish Meal,” Bulletin of the Japanese Society of Scientific Fisheries, Vol. 46, No. 7, 1980, pp. 897-899. doi:10.2331/suisan.46.897
[31] J. S. Haylor, M. C. M. Beveridge and K. Jauncey, “Phosphorus Nutrition of Juvenile Oreochromis niloticus,” In: R. S. V. Pullin, T. Bhukaswan, K. Tonguthai and J. L. Ma- clean (Eds.), The Second International Symposium on Ti- lapia in Aquaculture. ICLARM Conference Proceedings 15, Department of Fisheries, Bangkok and ICLARM, Manila, 1988, pp. 341-345.
[32] J.-C. Micha and V. Leonard, “Digestibility of the Aquatic Fern Azolla filiculoides Lamarck in Two Species of Tilapia: The Phytoplanktonophagous Oreochromis niloticus (L.) and the macrophytophagous Tilapia Rendalli (Boulenger),” Bulletin des Séances de l’Académie Royale des Sciences d’- Outre-Mer, Vol. 47, 2001, pp. 147-157.
[33] A. B. Patel and A. Yakupitiyage, “Mixed Feeding Schedules in Semi-Intensive Pond Culture of Nile Tilapia, Oreochromis niloticus, L.: Is It Necessary to Have Two Diets of Differing Protein Contents?” Aquaculture Research, Vol. 34, No. 14, 2003, pp. 1343-1352. doi:10.1046/j.1365-2109.2003.00957.x
[34] O. Schneider, A. K. Amirkolaie, J. Vera-Cartas, Ep. H. Eding, J. W. Schrama and J. A. J. Verreth, “Digestibility, Faeces Recovery, and Related Carbon, Nitrogen and Phosphorus Balances of Five Feed Ingredients Evaluated as Fishmeal Alternatives in Nile Tilapia, Oreochromis nilo- ticus L.,” Aquaculture Research, Vol. 35, No. 14, 2004, pp. 1370-1379. doi:10.1111/j.1365-2109.2004.01179.x
[35] V. Pouomogne, G. Takam and J.-B. Pouemegne, “A Preliminary Evaluation of Cacao Husks in Practical Diets for Juvenile Nile Tilapia (Oreochromis niloticus),” Aquaculture, Vol. 156, No. 3-4, 1997, pp. 211-219. doi:10.1016/S0044-8486(97)00091-4
[36] M. A. Hossain, U. Focken and K. Becker, “Evaluation of an Unconventional Legume Seed, Sesbania aculeata, as a Dietary Protein Source for Common Carp, Cyprinus carpio L.,” Aquaculture, Vol. 198, No. 1-2, 2001, pp. 129-140. doi:10.1016/S0044-8486(00)00574-3
[37] M. A. Hossain, U. Focken and K. Becker, “Nutritional Evaluation of Dhaincha (Sesbania aculeata) Seeds as Dietary Protein Source for Tilapia Oreochromis niloticus,” Aquaculture Research, Vol. 33, 2002, pp. 653-662. doi:10.1046/j.1365-2109.2002.00690.x
[38] P. Siddhuraju and K. Becker, “Preliminary Nutritional Evaluation of Mucuna Seed Meal (Mucuna pruriens var. utilis) in Common Carp (Cyprinus carpio L.): An Assessment by Growth Performance and Feed Utilization,” Aquaculture, Vol. 196, No. 1-2, 2001, pp. 105-123. doi:10.1016/S0044-8486(00)00577-9
[39] P. Siddhuraju and K. Becker, “Comparative Nutritional Evaluation of Differentially Processed Mucuna Seeds [Mucuna pruriens (L.) DC. Var. utilis (Wall ex Wight) Baker ex Burck)] on Growth Performance, Feed Utilization and Body Composition in Nile Tilapia (Oreochromis niloticus L.),” Aquaculture Research, Vol. 34, No. 6, 2003, pp. 487-500. doi:10.1046/j.1365-2109.2003.00836.x
[40] W. Afuang, P. Siddhuraju and K. Becker, “Comparative Nutritional Evaluation of Raw, Methanol Extracted Residues and Methanol Extracts of Moringa (Moringa oleifera Lam.) Leaves on Growth Performance and Feed Utilization in Nile Tilapia (Oreochromis niloticus L.),” Aqua- culture Research, Vol. 34, No. 13, 2003, pp. 1147-1159. doi:10.1046/j.1365-2109.2003.00920.x
[41] R. E. Olsen, R. J. Henderson and B. J. McAndrew, “The Conversion of Linoleic Acid and Linolenic Acid to Longer Chain Polyunsaturated Fatty Acids by Tilapia (Oreochromis niloticus) in Vivo,” Fish Physiology and Biochemistry, Vol. 8, 1990, pp. 261-270. doi:10.1007/BF00004465
[42] T. Takeuchi, K. Watanabe, W. Y. Yong and K. Watanabe, “Essential Fatty Acids of Grass Carp (Ctenopharyngodon idella),” Bulletin of the Japanese Society of Scientific Fisheries, Vol. 57, No. 3, 1991, pp. 467-473. doi:10.2331/suisan.57.467
[43] A. J. Anderson and A. H. Arthington, “Influence of Diet on the Biosynthesis of Lipid Classes and Fatty Acids in Silver Perch, Bidyanus bidyanus,” In: G. L. Allan and W. Dall, Eds., Proceeding of Aquaculture Nutrition Work-shop, Salamander Bay, 1992, pp. 41-45.
[44] B. S. Dosanjh, D. A. Higgs, D. J. McKenzie, D. J. randall, J. G. Eales, M. Rowshandili and G. Deacon, “Influence of Dietary Blends of Menhaden Oil and Canola Oil on Growth, Muscle Lipid Composition, and Thyroidal Status of Atlantic Salmon (Salmo salar) in Sea Water,” Fish Physiology and Biochemistry, Vol. 19, No. 2, 1998, pp. 123-134. doi:10.1023/A:1007727618179
[45] G. Mourente and D. R. Tocher, “The Invo Incorporation and Metabolism of (1-14C) Linoleate (18:3n-3) in Liver, Brain and Eyes of Juveniles of Rainbow Trout Onchorhynchus mykiss L. and Gilthead Sea Bream Sparua auratus L.,” Fish Physiology and Biochemistry, Vol. 18, 1998, pp. 149-165. doi:10.1023/A:1007717312480
[46] O. M. Bahurmiz and W-K. Ng, “Effects of Dietary Palm Oil Source on Growth, Tissue Fatty Acid Composition and Nutrient Digestibility of Red Hybrid Tilapia, Oreochromis sp., Raised from Stocking to Marketable Size,” Aquaculture, Vol. 262, No. 2-4, 2007, pp. 382-392. doi:10.1016/j.aquaculture.2006.11.023
[47] J. G. Bell, R. J. Henderson, D. R. Tocher, F. McGhee, J. R.Dick, A. Porter, R. P. Smullen and J. R. Sargent, “Substituting Fish Oil with Crude Palm Oil in the Diet of Atlantic Salmon (Salmo salar) Affects Muscle Fatty Acid Composition and Hepatic Fatty Acid Metabolism,” Journal of Nutrition, Vol. 132, No. 2, 2002, pp. 222-230.
[48] M. J. Caballero, A. Obach, G. Rosenlund, D. Montero, M. Gisvold and M. S. Izquierdo, “Impact of Different Dietary Lipid Sources on Growth, Lipid Digestibility, Tissue Fatty Acid Composition and Histology of Rainbow Trout, Onchorhynchus mykiss,” Aquaculture, Vol. 214, No. 1-4, 2002, pp. 253-271. doi:10.1016/S0044-8486(01)00852-3
[49] D. S. Francis, G. M. Turchini, P. L. Jones and S. S. De Silva, “Effects of Dietary Oil Source on Growth and Fillet Fatty Acid Composition of Murray Cod, Maccullochella peelii,” Aquaculture, Vol. 253, No. 1-4, 2006, pp. 547- 556. doi:10.1016/j.aquaculture.2005.08.008
[50] T. Zenebe, G. Ahlgren, I.-B. Gustafsson and M. Boberg, “Fatty Acid and Lipid Content of Oreochromis niloticus L. in Ethiopian Lakes—Dietary Effects of Phytoplankton,” Ecology of Freshwater Fish, Vol. 7, No. 3, 1998, pp. 146- 158. doi:10.1111/j.1600-0633.1998.tb00181.x
[51] G. M. Hallegraeff, P. D. Nichols, J. K. Volkman, S. I. Blackburn and D. A. Everitt, “Pigments, Fatty Acids, and Sterols of the Toxic Dinoflagellate Gymnodinium catenatum,” Journal of Phycology, Vol. 27, No. 5, 1991, pp. 591-599. doi:10.1111/j.0022-3646.1991.00591.x
[52] J. R. Sargent, M. V. Bell and R. J. Henderson, “Protists as Sources of (n-3) Polyunsaturated Fatty Acids for Vertebrate Development,” In: G. Brugerolle and J. P. Mignot, Eds., Proceedings of the Second European Congress of Protistology, Clermont-Ferrand, 1995, pp. 54-64.
[53] A. Awa?ss and P. Kestemont, “Dynamique de Production et Qualité Nutritive du Rotifère d’Eau Douce Brachionus calyciflorus,” Aquatic Living Resources, Vol. 10, No. 2, 1997, pp. 111-120. doi:10.1051/alr:1997012
[54] J. G. Bell, C. Ghioni and J. R. Sargent, “Fatty Acid Compositions of 10 Freshwater Invertebrates Which Are Natural Food Organisms of Atlantic Salmon parr (Salmo salar): A Comparison with Commercial Diets,” Aquaculture, Vol. 128, No. 3-4, 1994, pp. 301-313. doi:10.1016/0044-8486(94)90319-0

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.