Correlation of selected molecular markers in chemosensitivity prediction

DOI: 10.4236/jbise.2009.27073   PDF   HTML     4,392 Downloads   7,756 Views  


Finding effective cancer treatment is a challenge, because the sensitivity of the cancer stems from both intrinsic cellular properties and acquired resistances from prior treatment. Previous research has revealed individual protein markers that are significant to chemosensitivity prediction. Our goal is to find correlated protein markers which are collectively significant to chemosensitivity prediction to complement the individual markers already reported. In order to do this, we used the D’ correlation measurement to study the feature selection correlations for chemosensitivity prediction of 118 anticancer agents with putatively known mechanisms of action. Three data-sets on the NCI-60 were utilized in this study: two protein datasets, one previously studied for chemosensitivity prediction and another novel to this topic, and one DNA copy number dataset. To validate our approach, we identified the protein markers that were strongly correlated by our analysis with the individual protein markers found in previous studies. Our feature analysis discovered highly correlated protein marker pairs, based on which we found individual protein markers with medical significance. While some of the markers uncovered were consistent with those previously reported, others were original to this work. Using these marker pairs we were able to further correlate the cellular functions associated with them. As an exploratory analysis, we discovered feature selection correlation patterns between and within different drug mechanisms of action for each of our datasets. In conclusion, the highly correlated protein marker pairs as well as their functions found by our feature analysis are validated by previous studies, and are shown to be medically significant, demonstrating D’ as an effective measurement of correlation in the context of feature selection for the first time.

Share and Cite:

King, D. , Keane, T. and Hu, W. (2009) Correlation of selected molecular markers in chemosensitivity prediction. Journal of Biomedical Science and Engineering, 2, 506-515. doi: 10.4236/jbise.2009.27073.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Staunton, J. E., Slonim, D. K., Coller, H. A., Tamayo, P., Angelo, M. J., Park, J., Scherf, U., Lee, J. K., Reinhold, W. O., Weinstein, J. N., Mesirov, J. P., Lander, E. S., and Golub, T. R., (2001) Chemosensitivity prediction by transcriptional profiling, PNAS, 98, 10787?10792.
[2] Potti, A., Dressman, H. K., Bild, A., Riedel, R. F., Chan, G., Sayer, R., Cragun, J., Cottrill, H., Kelley, M. J., Petersen, R., Harpole, D., Marks, J., Berchuck, A., Ginsburg, G. S., Febbo, P., Lancaster, J., and Nevins, J. R., (2006) Genomic signatures to guide the use of chemotherapeutics. Nature Medicine, 12, 1294?1300.
[3] Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., Emmert-Buck, M. R., Roth, M. J., Petricoin, E. F., and Liott, L. A., (2001) Reverse phase protein microarrays which capture disease progression show activation of prosurvival pathways at the cancer invasion front, Oncogene, 20, 1981?1989.
[4] Lee, J. K., Bussey, K. J., Gwadry, F. G., Reinhold, W., Riddick, S. L. Pelletier, S. Nishizuka, G. Szakacs, J. Annereau, G., Shankavaram, U., Lababidi, S., Smith, L. H., Gottesman, M. M., and Weinstein, J. N., (2003) Comparing cDNA and oligonucleotide array data: Concor- dance of gene expression across platforms for the NCI- 60 cancer cells, Genome, Biol., 4, R82.
[5] Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J. C. F., Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D., and Brown, P. O., (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet., 24, 227?235.
[6] Shankavaram, U. T., Reinhold, W. C., Nishizuka, S., Major, S., Morita, D., Chary, K. K., Reimers, M. A., Scherf, U., Kahn, A., Dolginow, D., Cossman, J., Kaldjian, E. P., Scudiero, D. A., Petricoin, E., Liotta, L., Lee, J. K., and Weinstein, J. N., (2007) Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study, Mol. Cancer Ther., 6, 820? 832.
[7] Ma Y., Ding Z., Qian Y., Shi X., Castranova V., Harner, E. J., and Guo L., (2006) Predicting cancer drug response by proteomic profiling, Clin. Cancer Res., 12, 4583? 4589.
[8] Scherf U., Ross D. T., Waltham M., Smith L. H., Lee, J. K., Tanabe, L., Kohn, K. W., Reinhold, W. C., Myers, T. G., Andrews, D. T., Scudiero, D. A., Eisen, M. B., Sausville, E. A., Pommier, Y., Botstein, D., Brown, P. O., and Weinstein, J. N., (2000) A gene expression database for the molecular pharmacology of cancer, Nat. Genet., 24, 236?244.
[9] Ma, Y., Ding, Z., Qian, Y., Wan, Y., Tosun, K., Shi, X., Castranova, V., Harner, E. J., and Guo, N. L., (2009) An integrative genomic and proteomic approach to chemosensitivity prediction, International Journal of Oncology, 34, 107?115.
[10] Bussey, K. J., Chin, K., Lababidi, S., Reimers, M., Reinhold, W. C., Kuo, W., Gwadry, F., Ajay, Kouros-Mehr, H., Fridlyand, J., Jain, A., Collins, C., Nishizuka, S., Tonon, G., Roschke, A., Gehlhaus, K., Kirsch, I., Scudi ero, D. A., Gray, J. W., and Weinstein, J. N., (2006) Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel, Mol. Cancer Ther., 5, 853?867.
[11] Saeys, Y., Inza, I., and Larranaga, P., (2007) A review of feature selection techniques in bioinformatics. Bioinformatics, 23: 2507?2517.
[12] Lewontin, R. C., (1964) The interaction of selection and linkage, I. General considerations, Heterotic Models, Genetics, 49, 49?67.
[13] Nishizuka, S., Charboneau, L., Young, L., Major, S., Reinhold, W. C., Waltham, M., Kouros-Mehr, H., Bussey, K. J., Lee, J. K., Espina, V., Munson, P. J., Petricoin, E., Liotta, L. A., and Weinstein, J. N., (2003) Proteomic profiling of the NCI-60 cancer cell lines using new high- density reverse-phase lysate microarrays, Proc. Natl. Acad. Sci., USA, 100, 14229?14234.
[14] Hedrick, P. W., (1987) Gametic disequilibrium measures: proceed with caution, Genetics, 117, 331?341.
[15] Leardic R., Boggia, R., and Terrile, M., (2005) Genetic algorithms as a strategy for feature selection, Journal of Chemometrics, 6, 267?281.
[16] Zhu, Z., Ong, Y., and Dash, M., (2007) Markov blanket-embedded genetic algorithm for gene selection, Pattern Recognition, 40, 3236?3248.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.