Surface Plasmon Resonance of a Few Particles Linear Arrays

DOI: 10.4236/jemaa.2011.311073   PDF   HTML     5,637 Downloads   9,476 Views   Citations


We present a study of the enhancement of the electric field due to localized surface plasmons in a short chain of metallic nanoparticles with different shapes: spheres, cylinders and spheroids. We calculate numerically the external radiation effect on these chains and analyze besides the shape, also the influence on size, interparticle distances and number of nanoparticles, corroborating that each one plays a definitive role for the enhancement of the electric field. Particularly, we focus on the main features of the electric field in the inter-particle regions, where an enormous increasing is expected due to the longitudinal localized plasmons. The electric field distribution along the chain shows a maximum in the middle of the chain. This fact could be related to a hybridization effect as the gap between particles decreases below 2 nm, we also observe a strong enhancement with the number of nanoparticles. Also regarding the shape we find agreement with reported results on spheroids, moreover we show that lateral coupled cylinders are more flexible to tune the enhancement factor than all other.

Share and Cite:

J. Castro and Á. Beltrán, "Surface Plasmon Resonance of a Few Particles Linear Arrays," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 11, 2011, pp. 458-464. doi: 10.4236/jemaa.2011.311073.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Abbe, “Beitrge Zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv für mikroskopische Anatomie, Vol. 9, 1873, pp. 413-420.
[2] Y. Inouye and S. Kawata, “Near-Field Scanning Optical Microscope with a Metallic Probe Tip,” Optics Letters, Vol. 19, No. 3, 1994, pp. 159-161. doi:10.1364/OL.19.000159
[3] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letters, Vol. 85, No. 18, 2000, pp. 3966-3969. doi:10.1103/PhysRevLett.85.3966
[4] D. R. Smith, D. Schurig, M. Rosenbluth and S. Schultz, “Limitations on Subdiffraction Imaging with a Negative Refractive Index Slab,” Applied Physics Letters, Vol. 82, No. 10, 2003, Aiticle ID: 1506.
[5] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White and M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nature Materials, Vol. 9, No. 3, 2010, pp. 193-204. doi:10.1038/nmat2630
[6] H. W. Ch. Postma, “Rapid Sequencing of Individual DNA Molecules in Graphene Nanogaps,” Nano Letters, Vol. 10, No. 2, 2010, pp. 420-425. doi:10.1021/nl9029237
[7] M. Guillon, “Field Enhancement in a Chain of Optically Bound Dipoles,” Optics Express, Vol. 14, No. 7, 2006, pp. 3045-3055. doi:10.1364/OE.14.003045
[8] M. L. Brongersma and P. G. Kik, “Surface Plasmon Nano- photonics,” Springer Series in Optical Sciences, Vol. 131, 2007, pp. 1-9. doi:10.1007/978-1-4020-4333-8
[9] K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari and M. S. Feld, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Physical Review Letters, Vol. 76, 1996, pp. 2444- 2447. doi:10.1103/PhysRevLett.76.2444
[10] R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown and M. J. T. Milton, “Stokes/Anti-Stokes Anomalies under Surface Enhanced Raman Scattering Conditions,” Journal of Chemical Physics, Vol. 120, No. 24, 2004, pp. 11746-11753. doi:10.1063/1.1739398
[11] A. M. Michaels, J. Jiang and L. Brus, “Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scat- tering of Single Rhodamine 6 G Molecules,” The Journal of Physical Chemestry B, Vol. 104, No. 50, 2000, pp. 11965-11971. doi:10.1021/jp0025476
[12] H. Xu, J. Aizpurua, M. K?ll and P. Apell, “Electro- magnetic Contributions to Single-Molecule Sensitivity in Surface-Enhanced Raman Scattering,” Physical Review E, Vol. 62, No. 3, 2000, pp. 4318-4324. doi:10.1103/PhysRevE.62.4318
[13] H. Xu, X. H. Wang, M. P. Persson, H. Q. Xu, M. Kall and P. Johansson, “Unified Treatment of Fluorescence and Raman Scattering Processes near Metal Surfaces,” Physical Review Letters, Vol. 93, No. 24, 2004, pp. 243002-243005. doi:10.1103/PhysRevLett.93.243002
[14] P. Nordlander, C. Oubre, E. Prodan, K. Li and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Letters, Vol. 4, No. 5, 2004, pp. 899-903. doi:10.1021/nl049681c
[15] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Physical Review Letters, Vol. 94, 2005, pp. 017402-017405. doi:10.1103/PhysRevLett.94.017402
[16] L. Gunnarson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. K?ll, S. Zou and G. C. Schatz, “Confined Plasmons in Nanofabricated Single Silver Particle Pairs: Experimental Observations of Strong Interparticle Interactions,” The Journal of Physical Chemistry B, Vol. 109, No. 3, 2005, pp. 1079-1087. doi:10.1021/jp049084e
[17] J. V. Hernández, L. D. Noordam and F. Robicheaux, “Asymmetric Response in a Line of Optically Driven Metallic Nanospheres,” The Journal of Physical Chemistry B, Vol. 109, No. 33, 2005, pp. 15808-15811. doi:10.1021/jp0527352
[18] COMSOLAB, COMSOL, COMSOL MULTIPHYSICS, COMSOL Reaction Engineering Lab and FEMLAB are registered trademarks of COMSOLAB. Other product or brand names are trademarks or registered trademarks of their respective holders. All Rights Reserved. 1998-2010.
[19] P. Drude, “Zur Elektronentheorie der Metalle,” Annalen der Physik, Vol. 306, No. 3, 1900, pp. 566-613. doi:10.1002/andp.19003060312
[20] R, Kappeler, “Engineering the Field Enhancement at the Apex of a Structured Noble Metal Tip,” Diploma Thesis, Communication Photonics Group IFH/ifE ETH Zurich and Nano-Optics Group the Institute of Optics, University of Rochester, Rochester, 2006.
[21] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, Vol. 6, No. 12, 1972, pp. 4370-4379. doi:10.1103/PhysRevB.6.4370
[22] H. Xu, E. J. Bjerneld, M. K?ll and L. Borjesson, “Spec- troscopy of Single Hemoglobin Molecules by Surface En- hanced Raman Scattering,” Physical Review Letters, Vol. 83, No. 21, 1999, pp. 4357-4360. doi:10.1103/PhysRevLett.83.4357
[23] B. Willingham, D. W. Brandl and P. Nordlander, “Plasmon Hybridization in Nanorod Dimers,” Applied Physics B, Vol. 93, No. 1, 2008, pp. 209-216. doi:10.1007/s00340-008-3157-5
[24] S. A. Maier, P. G. Kik and H. A. Atwater, “Observation of Coupled Plasmon-Polariton Modes in Au Nanoparticle Chain Waveguides of Different Lengths: Estimation of Waveguide Loss,” Applied Physics Letters, Vol. 81, No. 9, 2002, pp. 1714-1716. doi:10.1063/1.1503870

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.