$.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
JSIP> Vol.2 No.4, November 2011
Share This Article:
Cite This Paper >>

Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems

Abstract Full-Text HTML Download Download as PDF (Size:427KB) PP. 287-291
DOI: 10.4236/jsip.2011.24041    4,590 Downloads   7,950 Views   Citations
Author(s)    Leave a comment
Juuso T. Olkkonen, Hannu Olkkonen




This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms.


State-Space Modelling, Dynamic System Analysis, EEG

Cite this paper

J. Olkkonen and H. Olkkonen, "Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems," Journal of Signal and Information Processing, Vol. 2 No. 4, 2011, pp. 287-291. doi: 10.4236/jsip.2011.24041.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Daum, “Nonlinear Filters: Beyond the Kalman Filter,” IEEE A&E Systems Magazine, Vol. 20, No. 8, 2005, pp. 57-69.
[2] A. Moghaddamjoo and R. L. Kirlin, “Robust Adaptive Kalman Filtering with Unknown Inputs,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 8, 1989, pp. 1166-1175. doi:10.1109/29.31265
[3] J. L. Maryak, J. C. Spall and B. D. Heydon, “Use of the Kalman Filter for Interference in State-Space Models with Unknown Noise Distributions,” IEEE Transactions on Automatic Control, Vol. 49, No. 1, 2005, pp. 87-90.
[4] R. Diversi, R. Guidorzi and U. Soverini, “Kalman Filtering in Extended Noise Environments,” IEEE Transactions on Automatic Control, Vol. 50, No. 9, 2005, pp. 1396-1402. doi:10.1109/TAC.2005.854627
[5] S. Attallah, “The Wavelet Transform-Domain LMS Adaptive Filter with Partial Subband-Coefficient Updating,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 1, 2006, pp. 8-12. doi:10.1109/TCSII.2005.855042
[6] H. Olkkonen, P. Pesola, A. Valjakka and L. Tuomisto, “Gain Optimized Cosine Transform Domain LMS Algorithm for Adaptive Filtering of EEG,” Computers in Biology and Medicine, Vol. 29, 1999, pp. 129-136. doi:10.1016/S0010-4825(98)00046-8
[7] E. Eweda, “Comparison of RLS, LMS, and Sign Algorithms for Tracking Randomly Time-Varying Channels,” IEEE Transactions on Signal Processing, Vol. 43, No. 11, 1994, pp. 2937-2944. doi:10.1109/78.330354
[8] D. Niebur and A. J. Germond, “Power System Static Security Assessment Using the Kohonen Neural Network Classifier,” IEEE Transactions on Power Systems, Vol. 7, No. 2, 1992, pp. 865-872. doi:10.1109/59.141797
[9] D.-J. Jwo and S.-H. Wang, “Adaptive Fuzzy Strong Tracking Extended Kalman Filtering for GPS Navigation,” IEEE Sensors Journal, Vol. 7, No. 5, 2007, pp. 778-789. doi:10.1109/JSEN.2007.894148
[10] S. Park, T. K. Sarkar and Y. Hua, “A Singular Value Decomposition-Based Method for Solving a Deterministic Adaptive Problem,” Digital Signal Processing, Vol. 9, No. 1, 1999, pp. 57-63. doi:10.1006/dspr.1998.0331
[11] T. J. Willink, “Efficient Adaptive SVD Algorithm for MIMO Applications,” IEEE Transactions on Signal Processing, Vol. 56, No. 2, 2008, pp. 615-622. doi:10.1109/TSP.2007.907806
[12] M. Unser, A. Aldroubi and M. Eden, “B-Spline Signal Processing. I. Theory,” IEEE Transactions on Signal Processing, Vol. 41, No. 2, 1993, pp. 821-833. doi:10.1109/78.193220
[13] M. Unser, A. Aldroubi and M. Eden, “B-Spline Signal Processing. II. Efficiency Design and Applications,” IEEE Transactions on Signal Processing, Vol. 41, No. 2, 1993, pp. 834-848. doi:10.1109/78.193221
[14] J. T. Olkkonen and H. Olkkonen, “Fractional Time-Shift B-Spline Filter,” IEEE Signal Processing Letters, Vol. 14, No. 10, 2007, pp. 688-691. doi:10.1109/LSP.2007.896402

comments powered by Disqus
JSIP Subscription
E-Mail Alert
JSIP Most popular papers
Publication Ethics & OA Statement
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.