Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems
Juuso T. Olkkonen, Hannu Olkkonen
DOI: 10.4236/jsip.2011.24041   PDF   HTML     4,900 Downloads   8,601 Views   Citations


This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms.

Share and Cite:

J. Olkkonen and H. Olkkonen, "Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems," Journal of Signal and Information Processing, Vol. 2 No. 4, 2011, pp. 287-291. doi: 10.4236/jsip.2011.24041.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Daum, “Nonlinear Filters: Beyond the Kalman Filter,” IEEE A&E Systems Magazine, Vol. 20, No. 8, 2005, pp. 57-69.
[2] A. Moghaddamjoo and R. L. Kirlin, “Robust Adaptive Kalman Filtering with Unknown Inputs,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 8, 1989, pp. 1166-1175. doi:10.1109/29.31265
[3] J. L. Maryak, J. C. Spall and B. D. Heydon, “Use of the Kalman Filter for Interference in State-Space Models with Unknown Noise Distributions,” IEEE Transactions on Automatic Control, Vol. 49, No. 1, 2005, pp. 87-90.
[4] R. Diversi, R. Guidorzi and U. Soverini, “Kalman Filtering in Extended Noise Environments,” IEEE Transactions on Automatic Control, Vol. 50, No. 9, 2005, pp. 1396-1402. doi:10.1109/TAC.2005.854627
[5] S. Attallah, “The Wavelet Transform-Domain LMS Adaptive Filter with Partial Subband-Coefficient Updating,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 1, 2006, pp. 8-12. doi:10.1109/TCSII.2005.855042
[6] H. Olkkonen, P. Pesola, A. Valjakka and L. Tuomisto, “Gain Optimized Cosine Transform Domain LMS Algorithm for Adaptive Filtering of EEG,” Computers in Biology and Medicine, Vol. 29, 1999, pp. 129-136. doi:10.1016/S0010-4825(98)00046-8
[7] E. Eweda, “Comparison of RLS, LMS, and Sign Algorithms for Tracking Randomly Time-Varying Channels,” IEEE Transactions on Signal Processing, Vol. 43, No. 11, 1994, pp. 2937-2944. doi:10.1109/78.330354
[8] D. Niebur and A. J. Germond, “Power System Static Security Assessment Using the Kohonen Neural Network Classifier,” IEEE Transactions on Power Systems, Vol. 7, No. 2, 1992, pp. 865-872. doi:10.1109/59.141797
[9] D.-J. Jwo and S.-H. Wang, “Adaptive Fuzzy Strong Tracking Extended Kalman Filtering for GPS Navigation,” IEEE Sensors Journal, Vol. 7, No. 5, 2007, pp. 778-789. doi:10.1109/JSEN.2007.894148
[10] S. Park, T. K. Sarkar and Y. Hua, “A Singular Value Decomposition-Based Method for Solving a Deterministic Adaptive Problem,” Digital Signal Processing, Vol. 9, No. 1, 1999, pp. 57-63. doi:10.1006/dspr.1998.0331
[11] T. J. Willink, “Efficient Adaptive SVD Algorithm for MIMO Applications,” IEEE Transactions on Signal Processing, Vol. 56, No. 2, 2008, pp. 615-622. doi:10.1109/TSP.2007.907806
[12] M. Unser, A. Aldroubi and M. Eden, “B-Spline Signal Processing. I. Theory,” IEEE Transactions on Signal Processing, Vol. 41, No. 2, 1993, pp. 821-833. doi:10.1109/78.193220
[13] M. Unser, A. Aldroubi and M. Eden, “B-Spline Signal Processing. II. Efficiency Design and Applications,” IEEE Transactions on Signal Processing, Vol. 41, No. 2, 1993, pp. 834-848. doi:10.1109/78.193221
[14] J. T. Olkkonen and H. Olkkonen, “Fractional Time-Shift B-Spline Filter,” IEEE Signal Processing Letters, Vol. 14, No. 10, 2007, pp. 688-691. doi:10.1109/LSP.2007.896402

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.