Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends
Kotiba Hamad, Mosab Kaseem, Fawaz Deri
DOI: 10.4236/aces.2011.14030   PDF   HTML     11,470 Downloads   21,539 Views   Citations


In this work, rheological properties of poly (lactic acid) (PLA), low density polyethylene (LDPE) polymer blends were investigated in the molten state. The experiments were carried on a capillary rheometer. The effect of shear stress, temperature and blending ratio on the flow activation energy at a constant shear stress and melt viscosity of the blends are described. The results showed that the PLA/LDPE polymer blends are pseudo plastic in nature, where there viscosity decreases with increasing shear stress. Also it was found the melt viscosity of the blends decreases with increasing PLA content in the blend.

Share and Cite:

K. Hamad, M. Kaseem and F. Deri, "Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends," Advances in Chemical Engineering and Science, Vol. 1 No. 4, 2011, pp. 208-214. doi: 10.4236/aces.2011.14030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. A. Utracki, “Polymer Blends Handbook,” Kluwer Academic Publishers, London, 2002.
[2] J. Lunt, “Large-Scale Production, Properties and Commercial Applications of Poly Lactic Acid Polymers,” Polymer Degradation and Stability, Vol. 59, No. 1-3, 1998, pp. 145-152. doi:10.1016/S0141-3910(97)00148-1
[3] S. Ishida, R. Nagasaki, K. Chino, T. Dong and Y. Inoue, “Toughening of Poly (L-lactide) by Melt Blending with Rubbers,” Journal of Applied Polymer Science, Vol. 113, No. 1, 2009, pp. 558-566. doi:10.1002/app.30134
[4] P. Sarazin, G. Li, W. Orts and B. Favis, “Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch,” Polymer, Vol. 49, No. 2, 2008, pp. 599-609. doi:10.1016/j.polymer.2007.11.029
[5] N. Wang, J. Yu, P. Chang and X. Ma, “Influence of Formamide and Water on the Properties of Thermoplastic Starch/Poly (Lactic Acid) Blends,” Carbohydrate Polymers, Vol. 71, No. 1, 2008, pp. 109-118. doi:10.1016/j.carbpol.2007.05.025
[6] N. Wang, J. Yu and X. Ma, “Preparation and Characterization of Compatible Thermoplastic Dry Starch/Poly (Lactic Acid),” Polymer Composites, Vol. 29, No. 5, 2008, pp. 551-559. doi:10.1002/pc.20399
[7] N. Wang, J. Yu and X. Ma, “Preparation and Characterization of Thermoplastic Starch/PLA Blends by One-Step Reactive Extrusion,” Polymer International, Vol. 56, No. 11, 2007, pp. 1440-1447. doi:10.1002/pi.2302
[8] N. Wang, J. Yu, P. Chang and X. Ma, “Influence of Citric Acid on the Properties of Glycerol-Plasticized Dry Starch (DTPS) and DTPS/Poly (Lactic Acid) Blends,” Starch, Vol. 59, No. 9, 2007, pp. 409-417. doi:10.1002/star.200700617
[9] M. Huneault and H. Li, “Morphology and Properties of Compatibilized Polylactide/Thermoplastic Starch Blends,” Polymer, Vol. 48, No. 1, 2007, pp. 270-280. doi:10.1016/j.polymer.2006.11.023
[10] A. Bhatia, R. Gupta, S. Bhattacharya and H. Choi, “Compatibility of Biodegradable Poly (Lactic Acid) (PLA) and Poly (Butylenes Succinate) (PBS) Blends for Packaging Application,” Korea-Australia Rheology Journal, Vol. 19, No. 3, 2007, pp. 125-131.
[11] S. Lee and J. W. Lee, “Characterization and Processing of Biodegradable Polymer Blends of Poly (Lactic acid) with Poly (Butylene Succinate Adipate),” Korea-Australia Rheology Journal, Vol. 17, No. 2, 2005, pp. 71-77.
[12] J. Ren, H. Fu, T. Ren and W. Yuan, “Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly (Lactic Acid) and Poly (Butylene Adipate-Co-Terephthalate),” Carbohydrate Po- lymers, Vol. 77, No. 3, 2009, pp. 576-582. doi:10.1016/j.carbpol.2009.01.024
[13] J. T. Yeh, C. H. Tsou, C. Y. Huang, K. N. Chen, C. S. Wu and W. L. Chai, “Compatible and Crystallization Properties of Poly (Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends,” Journal of Applied Polymer Science, Vol. 116, No. 2, 2009, pp. 680-687.
[14] M. B. Coltelli, I. D. Maggiore, M. Bertoldo, F. Signori, S. Bronco and F. Ciardelli, “Poly (Lactic Acid) Properties as a Consequence of Poly (Butylene Adipate-Co- Terephthalate) Blending and Acetyl Tributyl Citrate Plasticization,” Journal of Applied Polymer Science, Vol. 110, No. 2, 2008, pp. 1250-1262. doi:10.1002/app.28512
[15] H. Xiao, W. Lu and J. T. Yeh, “Crystallization Behavior of Fully Biodegradable Poly (Lactic Acid)/Poly (Butylene Adipate-Co-Terephthalate) Blends,” Journal of Applied Polymer Science, Vol. 112, No. 6, 2008, pp. 3754-3763. doi:10.1002/app.29800
[16] Y. Li and H. Shimizu, “Improvement in Toughness of Poly (L-lactic Acid) (PLLA) through Reactive Blending with Acrylonitrile-Butadiene-Styrene Copolymer (ABS): Morphology and Properties,” European Polymer Journal, Vol. 45, 2009, pp.738-746. doi:10.1016/j.eurpolymj.2008.12.010
[17] A. Bourmaud and S. Pimbert, “Investigations on Mechanical Properties of Poly (Propylene) and Poly (Lactic Acid) Reinforced by Miscanthus Fibers,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 9, 2008, pp. 1444-1454. doi:10.1016/j.compositesa.2008.05.023
[18] N. Reddy, D. Nama and Y. Yang, “Polylactic Acid/ Polypropylene Polyblend Fibers for Better Resistance to Degradation,” Polymer Degradation and Stability, Vol. 93, No. 1, 2008, pp. 233-241. doi:10.1016/j.polymdegradstab.2007.09.005
[19] K. Hamad, M. Kaseem and F. Deri, “Rheological and Mechanical Characterization of Poly (Lactic Acid)/ Polypropylene Polymer Blends,” Journal of Polymer Research.
[20] G. Biresaw and C. J. Carriere, “Compatibility and Mechanical Properties of Blends of Polystyrene with Biodegradable Polyesters,” Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 3, 2004, pp. 313- 320. doi:10.1016/j.compositesa.2003.09.020
[21] K. Hamad, M. Kaseem and F. Deri, “Rheological and Mechanical Properties of Poly (Lactic Acid)/Polystyrene Polymer Blend,” Polymer Bulletin, Vol. 65, No. 5, 2010, pp. 509-519. doi:10.1007/s00289-010-0354-2
[22] H. M. Park, S. R. Lee, S. R. Chowdhury, T. K. Kang, H. K. Kim, S. H. Park and C. S. Ha, “Tensile Properties, Morphology, and Biodegradability of Blends of Starch with Various Thermoplastics,” Journal of Applied Polymer Science, Vol. 86, No. 11, 2002, pp. 2907-2915. doi:10.1002/app.11332
[23] Y. F. Kim, C. N. Choi, Y. D. Kim, K. Y. Lee and M. S. Lee, “Compatibilization of Immiscible Poly (L-lactide) and Low Density Polyethylene Blends,” Fibers and Polymers, Vol. 5, No. 4, 2004, pp. 270-274. doi:10.1007/BF02875524
[24] H. Balakrishnan, A. Hassan and M. U. Wahit, “Mechanical, Thermal, and Morphological Properties of Polylactic Acid/Linear Low Density Polyethylene Blends,” Journal of Elastomers and Plastics, Vol. 42, No. 3, 2010, pp. 223-239. doi:10.1177/0095244310362403
[25] G. Singh, H. Bhunia, A. Rajor, R. N. Jana and V. Choudhary, “Mechanical Properties and Morphology of Polylactide, Linear Low-Density Polyethylene, and Their Blends,” Journal of Applied Polymer Science, Vol. 118, No. 1, 2010, pp. 496-502.
[26] Z. Tadmor and C. G. Gogos, “Principles of Polymer Processing,” John Wiley & Sons, Inc., Hoboken, 2006.
[27] C. D. Han, “Rheology and Processing of Polymeric Materials (Polymer Processing),” Oxford University Press, New York, 2007.
[28] E. B. Bagley, “End Corrections in the Capillary Flow of Polyethylene,” Journal of Applied Physics, Vol. 28, No. 5, 1957, pp. 624-627. doi:10.1063/1.1722814
[29] W. Sinthavathavorn, M. Nithitanakul, B. Grady and R. Mangaraphan, “Melt Rheology and Die Swell of PA6/ LDPE Blends by Using Lithium Ionomer as a Compatibilizer,” Polymer Bulletin, Vol. 63, No. 1, 2009, pp. 23-35. doi:10.1007/s00289-009-0063-x

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.