Share This Article:

Community Structure, Diversity, Biomass and Net Production in a Rehabilitated Subtropical Forest in North India

Abstract Full-Text HTML Download Download as PDF (Size:405KB) PP. 11-26
DOI: 10.4236/ojf.2011.12003    5,894 Downloads   13,247 Views   Citations


Gangetic alluvial plain in north India constitutes significant proportions of barren sodic lands. A representative site, where afforestation was carried out during 1960s to rehabilitate the site under forest ecosystem, was selected to assess the restoration success. Three stands (S1, S2, and S3) were selected in a semi-natural subtropical forest at Banthra, Lucknow (26°45’ N, 80°53’ E) on the basis of different vegetation morphology and basal area gradient. Species composition and their growth forms were studied in overstory, understory and ground layer vegetation, in which dominants were assorted. Among the dominants few species were common in the three stands as also in different strata, which perhaps indicate their natural regeneration. Classification of individuals among the different size classes indicated ‘L’ shape distribution in which most of the individuals remained confined in younger groups. Biomass increased from the stand S1 to S3 stand in overstory, and vise versa for understory. Stand S2 consisted of predominance of ground layer biomass over the other stands. Biomass allocation in different plant components differed significantly between the overstory and understory for aerial woody components (stem and branch). Annual litter fall did not differ significantly among the stands, where as fine root biomass (up to 45 cm soil depth) decreased from S1 to S3 stands. Rainy and summer seasons contributed to two-third proportion of total annual fine root production. The state of this rehabilitated forest when compared with the degraded and reference forest of the region indicated that structural complexity, biomass and production levels have been achieved to 70% of the reference forest site even after having a different species composition.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Singh, B. , Tripathi, K. & Singh, K. (2011). Community Structure, Diversity, Biomass and Net Production in a Rehabilitated Subtropical Forest in North India. Open Journal of Forestry, 1, 11-26. doi: 10.4236/ojf.2011.12003.


[1] Aber, J. D., Melillo, J. M., Nadelhoffer, K. J., McClaugherty, C. A., & Pastor, J. (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. Oecologia, 66, 317-321. doi:10.1007/BF00378292
[2] Abrol, I. P. (1986). Fuel and forage production from salt affected wasteland in India. Reclamation Revegetation Research, 5, 65-74.
[3] Abrol, I. P., & Bhumbla, D. R. (1971). Saline and alkali soils in India—their occurrence and management. Rome: World Soil Resources, FAO Report.
[4] Abrol, I. P., & Joshi, P. K. (1986). Economic viability of reclamation of alkali lands with special reference to agriculture and forestry. In H. R. Yadav (Ed.), Wasteland diagnosis and treatment (pp. 149-168). New Delhi: Concept Publishing Co.
[5] Adhikari, B. S. (1992). Biomass productivity and nutrient cycling of Kharsu Oak silver fir forests in central Himalaya. Ph.D. Thesis, Naintial: Kumaun Universi-ty.
[6] Agrawal, R. R., & Gupta, R. N. (1968). Saline alkali soils in India. New Delhi: ICAR Technical Bulletin (Agriculture Se-ries).
[7] Ahuja, P. S., Singh, .K. N., & Rana, R. S. (1979). Evaluation of forages and other plants for utilization of salt affected soils. Karnal: Trees Annual Report CSSIR.
[8] Alice, F., Montagnini, F., & Montero, M. (2004). Productividad en plantacionespuras y mixtas de especies forestales nativas en La Estaci?n Biol?gica La Selva, Sarapiquí. Agronomy Costarricense, 28, 61-71.
[9] Auclair, A. N., & Goff, F. G. (1971). Diversity relations of upland forests in western Great Lakes area. American Naturalist, 105, 499-528. doi:10.1086/282742
[10] Barbier, S., Gosselin, F., & Balandier, P. (2008). Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. Forest Ecology & Management, 254, 1-15. doi:10.1016/j.foreco.2007.09.038
[11] Bargali, S. S., Singh, S. P., & Singh, R. P. (1992). Structure and function of an age series of eucalypts plantations in Central Himalaya. I. Dry matter dynamics. Annals of Botany, 69, 405-411.
[12] Bhojvaid, P. P., & Timmer, V. R. (1998). Soil dynamics in an age sequence of Prospis juliflora planted for sodic soil restoration in India. Forest Ecology & Management, 106, 181-193. doi:10.1016/S0378-1127(97)00310-1
[13] Binkley, D., O’Connel, A. M., & Sankaran, K. V. (1997). Stand growth: pattern and controls. In E. K. S. Nambiar and A. Brown (Eds.), Management of soil, water nutrients in tropical plantation forests (pp. 719-442). Canberra: ACIAR Monograph 43.
[14] Binkley, D., & Ryan, M. G. (1998). Net primary production and nutrient cycling in replicated stands of Eucalyptus saligna and Albizia facaltaria. Forest Ecology & Management, 112, 79-85. doi:10.1016/S0378-1127(98)00331-4
[15] Brinkley, D., White, S. C., & Gosz, J. R. (2004). Tree biomass and net increment in an old aspen forest in New Mexico. Forest Ecology & Management, 203, 407-410. doi:10.1016/j.foreco.2004.08.010
[16] Brockway, D. G. (1998). Forest plant diversity at local and landscape scales in the cascade mountains of south-western Washington. Forest Ecology & Management, 109, 323-341. doi:10.1016/S0378-1127(98)00266-7
[17] Brown, S., & Lugo, A. E. (1982). The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161-187. doi:10.2307/2388024
[18] Cavelier, J. (1992). Fine root biomass and soil properties in a semideciduous and lower montane rain forest in Panama. Plant and Soil, 142, 187-201. doi:10.1007/BF00010965
[19] Chapin, F. S. III, Vitousek. P. M., & Cleve, K. V. (1986). The nature of nutrient limitation in plant communities. The American Naturalist, 127, 48-58. doi:10.1086/284466
[20] Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Lavourel, S., Reynolds, H. L., Hooper, D. U., Sala, O. E., Hobbie, S. E., Mack, M. C., & Diaz, S. (2000). Consequences of changing biotic diversity. Nature, 405, 234-242. doi:10.1038/35012241
[21] Chaturvedi, A. N. (1985). Firewood farming on degraded lands in the gangetic plain. Uttar Pradesh: Forest Bulletin.
[22] Chaturvedi, A. N., & Behl, H. M. (1996). Biomass production trials on sodic site. The Indian Forester, 122, 439-455.
[23] Chaturvedi, A. N., Bhatia, S., & Behl, H. M. (1991). Biomass assessment for shrubs. The Indian Forester, 117, 1032-1035.
[24] Dadhwal, V. K., Shukla, N., & Vora, A. B. (1997). Forest litter fall in India: A review and an estimate of litter fall carbon flux. The Indian Forester, 123, 45-52.
[25] Dantas, M., & Phillipson, J. (1989). Litter fall and litter nutrient content in primary and secondary Amazonian terra firm rain forest. Journal Tropical Ecology, 5, 27-36. doi:10.1017/S0266467400003199
[26] Dogra, P. D. (1989). Fuel wood production potential in India through short rotation intensive culture (SRIC) system applied to tree growing for fuel wood on reduced land area or on wasteland sites. The Indian Forester, 115, 11-16.
[27] Dutta, R. K., & Agrawal, M. (2003). Restoration of opencast coal mine spoil by planting exotic tree species: A case study in dry tropical region. Ecological Engineering, 21, 143-151. doi:10.1016/j.ecoleng.2003.10.002
[28] Evans, J. (1992). Plantation forestry in the tropics (2nd ed., p. 403). Oxford: Oxford Science.
[29] Fahey, T. J., & Hughes, J. W. (1994). Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, N.H. Ecology, 82, 533-548. doi:10.2307/2261262
[30] Fogel, R. (1985). Roots as primary producers in below ground ecosystems. In A. H. Fitter et al., (Eds.), Ecological interaction in soil plants, microbes and animals (pp. 23-26). Special Bulletin Number 4 of the British Ecological Society. Oxford: Blackwell Scientific Pub-lication.
[31] Garg, V. K. (1998). Interaction of tree crops with a sodic soil environment: Potential for rehabilitation of degraded environments. Land Degradation Development, 9, 81-93. doi:10.1002/(SICI)1099-145X(199801/02)9:1<81::AID-LDR267>3.0.CO;2-R
[32] Garg, V. K., & Jain, R. K. (1992). Influence of fuel wood trees on sodic soils. Canadian Journal of Forest Research, 22, 729-735. doi:10.1139/x92-098
[33] Garg, V. K., & Khanduja, S. D. (1979). Mineral composition of leaves of some forest trees grown on alkali soils. The Indian Forester, 105, 741-745.
[34] Garkoti, S. C. (1992). High altitude forests of central Himalaya: productivity and nutrient cycling. Ph.D. Thesis, Nainital: Kumaun University.
[35] Gilliam, F. S., Turrill, N. L., & Adams, M. B. (1995). Herbaceous-layer and overstory species in clear-cut and mature central applachian hardwood forests. Ecological Applications, 5, 947-955. doi:10.2307/2269345
[36] Grier, C. C., Vogt, K. A., Keys, M. R., & Edmonds, R. L. (1981). Biomass distribution, above and below ground production in young and mature Abies amabilis zone ecosystem of the Washington cascades. Canadian Journal Forest Research, 11, 155-167. doi:10.1139/x81-021
[37] Gupta, R. K., & Abrol, I. P. (1990). Reclamation and management of alkli soils. Indian Journal of Agricultural Sciences, 60, 1-60.
[38] Gupta, S. R., & Bhardwaj, B. B. (1993). Biomass and productivity of forest ecosystems of Shivalik hills. Journal of Tree Sciences, 12, 57-63.
[39] Haase, R. (1999). Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. Forest Ecology & Management, 117, 129-147. doi:10.1016/S0378-1127(98)00477-0
[40] Habeck, J. R. (1968). Forest succession in the Glacier Peak Cedar-hemlock forests. Ecology, 49, 872-880. doi:10.2307/1936539
[41] Halpern, C. B., & Spies, T. A. (1995). Plant species diversity in natural and managed forests of the pacific northwest. Ecological Applications, 5, 913-934. doi:10.2307/2269343
[42] Hara, T. (1988). Dynamics of size structure in plant populations. Trends in Ecology & Evolution, 3, 129-133. doi:10.1016/0169-5347(88)90175-9
[43] Hill, M. O. (1973). Diversity and Evenness: A unifying notation and its consequences. Ecology, 54, 427-432. doi:10.2307/1934352
[44] Hurlbert, S. H. (1971). The non concept of species diversifies: a critique and alternative pa-rameters. Ecology, 52, 577-586. doi:10.2307/1934145
[45] Huston, M. A. (1997). Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449-460. doi:10.1007/s004420050180
[46] Jain, R. K., & Singh, B. (1998). Biomass production and soil amelioration in a high density Terminalia arjuna plantation in sodic soils. Biomass & Bioenergy, 1-6.
[47] Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104, 501-528. doi:10.1086/282687
[48] Jha, C. S. (1990). Landuse and vegetation analysis of a dry tropical forest region. Ph.D. thesis, Varanasi: Banaras Hindu University.
[49] Jha, C. S., & Singh, J. S. (1990). Composition and dynamics of dry tropical forest in relation to soil texture. Journal of Vegetation Science, 1, 609-614.
[50] Jordan, C. F. (1971a). Productivity of tropical forest and its relation to a world pattern of energy storage. Journal of Ecology, 59, 127-142. doi:10.2307/2258457
[51] Jordan, C. F. (1971b). A world pattern in plant energetic. American Scientist, 59, 425-433.
[52] Kelley, W. P. (1951). Alkali soils: their formation, properties and reclamation. New York: Reinhold Publishing Corporation.
[53] Keyes, M. R., & Grier, C. C. (1981). Above and below ground net production in 40 year old Douglas fir stands on high and low productivity sites. Canadian Journal of Forest Research, 11, 599-605. doi:10.1139/x81-082
[54] Khan, W. M. A., & Yadav, J. S. P. (1962). Characteristics and afforestation problems of saline alkali soils. The Indian Forester, 88, 259-271.
[55] Khanduja, S. D., Chandra, V., Srivastava, G. S., Jain, R. K., Misra, P. N., & Garg, V. K. (1986). Utilization of alkali soils in the plans of northern India—A case study (p. 54). New Delhi: Commonwealth Science Council.
[56] Khiewtan, R. S., & Ramakrishnan, P. S. (1993). Litter and fine root dynamics of a relict sacred grove forest at Cherapunji in northeastern India. Forest Ecology & Management, 60, 327-344. doi:10.1016/0378-1127(93)90087-4
[57] Khoshoo, T. N. (1987). Ecodevelopment of alkaline land. A case study (pp. 141). New Delhi: Publication and Information Directorate, CSIR, on behalf of Director NBRI, Lucknow.
[58] Kira, T., Ogawa, .H, Yoda, K., & Ogino, K. (1967). Comparative ecological studies on three main types of forest vegetation in Thailand. Dry matter production with special reference to the Khaochong rain forest (4th ed.). Kyoto: Nature and Life in South East Asia.
[59] Kobayashi, S. (2004). Landscape rehabilitation of degraded tropical forest ecosystems. Case study of the CI-FROR/Japan project in Indonesia and Peru. Forest Ecology and Management, 201, 13-22. doi:10.1016/j.foreco.2004.06.009
[60] Kohyama, T., Hara, T. (1989). Frequency distribution of tree growth in natural forest stands. Annals of Botany, 64, 47-57.
[61] Liang, J., Buongiorno, J., Monserud, R. A., Kruger, E. L., & Zhou, M. (2007). Effect of diversity of tree species and size on forest basal area growth, recruitment and mortality. Forest Ecology and Management, 243, 116-127. doi:10.1016/j.foreco.2007.02.028
[62] Long, J. N. (1977). Trends in plant species diversity associated with development in a series of Pseudotsuga menziesiil, Gaultheria shallon stands. Northwest Science, 51, 119-130.
[63] Loreau, M., Mouquet, N., & Gonzalez, A. (2003). Biodiversity as spatial insurancein heterogeneous landscapes. Proceedings of National Academy of Sciences, 100, 12765-12770. doi:10.1073/pnas.2235465100
[64] Loucks, O. L. (1970). Evolution of diversity, efficiency, and community stability. American Zoology, 10, 17-25.
[65] Lugo, A. E., Clark, J. R., & Child, R. D. (1998). Ecological development in the humid tropics: guidelines for planners. Morilton, Arkansas: Winrock International Institute of Agriculture Development.
[66] Margalef, R. (1963). On certain unifying principles in ecology. American Naturalist, 97, 357-374. doi:10.1086/282286
[67] Margalef, R. (1968). Perspectives in ecological theory. Chicago: University of Chicago Press.
[68] McClaugherty, C. A, Aber, J. D., & Melillo, J. M. (1982). The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology, 63, 1481-1490. doi:10.2307/1938874
[69] Misra, R. (1968). Ecology work book. Calcutta: Oxford and IBH Publishing Company.
[70] Murphy, P. G., & Lugo, A. E. (1986a). Ecology of tropical dry forests. Annual Review of Ecology, Evolution and Systematics, 17, 67-88. doi:10.1146/
[71] Murphy, P. G., & Lugo, A. E. (1986b). Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica, 18, 89-96. doi:10.2307/2388750
[72] Nagaike, T., Kamitani, T., & Nagashizuka, T. (1999). The effect of shelter wood logging on the diversity of plant species in a beech (Fagus crenata) forest in Japan. Forest Ecology and Management, 118, 161-171. doi:10.1016/S0378-1127(98)00500-3
[73] Naidu, R., & Rengasamy, P. (1993). Ion interactions and constraints to plant nutrition in Australian sodic soils. Australian Journal of Soil Research, 31, 801-819. doi:10.1071/SR9930801
[74] Nicholson, S. A., & Monk, C. D. (1974). Plant species diversity in old field succession on the Georgia Piedmont. Ecology, 55, 1075-1085. doi:10.2307/1940357
[75] Nicholson, S. A., & Scott, J. T. (1972). Successional trends in plant communities in the Lake George drainage basin. Bulletin of Ecological Society of America, 53, 17.
[76] Odum, E. P. (1960). Organic production and turnover in old-field succession. Ecology, 41, 34-49. doi:10.2307/1931937
[77] Odum, E. P. (1969). The strategy of ecosystem development. Science, 164, 262-270. doi:10.1126/science.164.3877.262
[78] Pandey, G. C. (1966). A short not on introduction of tree species on wild “Usar” lands of Uttar Pradesh (p. 377). Proceedings of XI Silva Conference, Dehradun.
[79] Pandey, V. C., Singh, K., Singh, B., Singh, R. P., (2011). New approaches to enhance eco-restoration efficiency of degraded sodic Lands: critical research needs and future prospects. Ecological Restoration, 29, 322-325. doi:10.3368/er.29.4.322
[80] Parthsarthy, N. (1988). Seasonal dynamics of fine roots in a tropical forest in south India. Journal of Indian Botanical Society, 66, 338- 345.
[81] Patten, B. C. (1962). Species Diversity in net phytoplankton of Raritan Bay. Journal of Marine Research, 20, 57-75.
[82] Peet, R. K. (1978). Forest vegetation of the Colorado Front Range: Patterns of species diversity. Vegetation, 37, 65-78. doi:10.1007/BF00126830
[83] Persson, H. (1979). Fine root production, mortality and decomposition in forest ecosystems. Vegetation, 41, 101-109. doi:10.1007/BF00121422
[84] Persson, H. (1980). Structural properties of the field and bottom layers at Ivantjarnsheden. In T. Person (Ed.), Structure and function of northern coniferous forest—An ecosystem study (pp. 153-163). Stockholm: Swedish Natural Science Resarch Council.
[85] Persson, H. A. (1978). Root dynamics in a young Scots pine stand in central Sweden. Oikos, 30, 508-519. doi:10.2307/3543346
[86] Petit, B., & Montagnini, F. (2004). Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid Neotropics. Forest Ecology & Management, 199, 243-257.
[87] Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoratical Biology, 13, 131-144. doi:10.1016/0022-5193(66)90013-0
[88] Piotto, D., Montagnini F., Ugalde, L., & Kanninen, M. (2003a). Growth and effects of thinning of mixed and pure plantations with native trees in humid tropical Costa Rica. Forest Ecology and Management, 177, 427-439. doi:10.1016/S0378-1127(02)00445-0
[89] Piotto, D., Montagnini, F., Ugalde, L., & Kanninen, M. (2003b). Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. Forest Ecology and Management, 175, 195-204. doi:10.1016/S0378-1127(02)00127-5
[90] Prasad, K. G., & Sharma, S. D. (1990). Status report on afforestation of salt affected soils in India. Proc. National Seminar on Technology for Afforestation of Wastelands (pp. 41). Dehradun, Uttar Pradesh: Forest Research Institute.
[91] Proctor, J., Anderson, J. M., Chai, P., & Vallack, H. W. (1983). Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. forest environments structure and floristics. Journal of Ecology, 71, 237-260. doi:10.2307/2259975
[92] Rai, S. N., & Proctor, J. (1986). Ecological studies on four rainforests in Karnataka, India. I. Environment, structure, floristic and biomass. Journal of Ecology, 74, 439-454. doi:10.2307/2260266
[93] Rao, P., Barik, S. K., Pandey, H. N., & Tripathi, R. S. (1990). Community composition and tree population structure in a sub-tropical broad-leaved forest along a disturbance gradient. Vegetation, 88, 151-162. doi:10.1007/BF00044832
[94] Sandhu, S. S., & Abrol, I. B. (1981). Growth responses of Eucalyptus tereticornis and Acacia nilotica to selected cultural treatments in a highly sodic soil. Indian Journal of Agriculture Science, 51, 437-443.
[95] Santantonio, D, & Hermann R. K. (1985). Standing crop production and turnover of fine roots on dry moderate and wet sites of mature Douglas fir in Western Oregon. Annals Forestry Science, 42, 113- 142. doi:10.1051/forest:19850201
[96] Santantonio, D., & Santantonio, E. (1987). Effect of thining on production and mortality of fine roots in a Pinus radiata plantation on the fertile site in New Zealand. Canadian Journal of Forest Research, 17, 919-928. doi:10.1139/x87-144
[97] Satoo, T. (1971). Primary production relations of coniferous forests in Japan, In P. Duvigneaud (Ed.), Productivity of forest ecosystem (pp. 191-205). Paris: Unesco.
[98] Schoonmaker, P., & McKee, A. (1988). Species composition and diversity during secondary succession of coniferous forests in the Western Cascade Mountains of Oregon. Forest Science, 34, 960-979.
[99] Schulze, E. D., & Mooney, H. A. (1993). Biodiversity and Ecosystem Function. Berlin: Springer-Verlag.
[100] Shafi, M. I., & Yaranton, G. A. (1973). Diversity floristic richness and species evenness during a secondary (post fire) succession. Ecology, 54, 897-902. doi:10.2307/1935686
[101] Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Urbana: University of Illinois Press.
[102] Sharma, S. D., Prasad, K. G., Rai, L., & Malik, N. (1992). Development of technology for afforestation of sodic solis. I-leguminous species. The Indian Forester, 108, 547-559.
[103] Sharma, S. K. (1988). Recent advances in afforestation of salt affected soils in India. Advances in Forest Research, 2, 17-31.
[104] Shukla, A. K., & Misra, P. N. (1993). Improvement of sodic soil under tree cover. The Indian Forester, 119, 43-52.
[105] Shukla, S. K., Singh, K., Gautam, N. N., Singh, B. (2011). Biomass productivity and nutrient availability of Cynodon dactylon (L.) Pers. growing on soils of different sodicity stress. Biomass & Bioenergy, 35, 3440-3447. doi:10.1016/j.biombioe.2011.04.027
[106] Simmons, J. (1993). Lime effects on carbon and nitrogen dynamics of a northern hardwood forest floor. Ph.D. Thesis, Ithaca, New York: Cornell University.
[107] Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688. doi:10.1038/163688a0
[108] Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2004). Impact of native tree plantations on mine spoil in a dry tropical environment. Forest Ecology and Management, 187, 49-60. doi:10.1016/S0378-1127(03)00309-8
[109] Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2002). Plantation as a tool for mine spoil restoration. Current Science, 82, 1436-1441.
[110] Singh, B. (1996). Influence of forest litter on reclamation of semiarid sodic soils. Arid Soil Research Rehabilitation, 10, 201-211. doi:10.1080/15324989609381435
[111] Singh, B. (1997). Deforestation consequences and rehabilitation of sodic wastelands in the gangetic plains. In S.K. Gupta and K. Kumar (Eds.), Environmental Degradation (pp. 119-134). Varanasi: Tara Book Agency.
[112] Singh, B. (1998). Biomass potentials of some firewood shrubs of North India: Short communication. Biomass, 16, 199-203. doi:10.1016/0144-4565(88)90092-3
[113] Singh, B. (1998). Biomass production and nutrient dynamics in three clones of Populus deltoids planted on Indo-Gangetic plains. Plant and Soil, 203, 15-26. doi:10.1023/A:1004388903402
[114] Singh, B., Garg, V. K., Singh, P. K., & Tripathi, K. P. (2004). Diversity and Productivity effect on the Amelioration of Afforested Sodic Soils. The Indian Forester, 130, 14-26.
[115] Singh, B., Tripathi, K. P., Jain, R. K., & Behl, H. M. (2000). Fine root biomass and tree species effects on potential N mineralization in afforested sodic soils. Plant and Soil, 219, 81-89. doi:10.1023/A:1004720826347
[116] Singh, J. S., Rawat, Y. S., & Chaturvedi, O. P. (1984). Replacement of oak forest with pine in the Himalaya affects the nitrogen cycle. Nature, 11, 54-60. doi:10.1038/311054a0
[117] Singh, K., Yadav, J. S. P., & Sharma, S. K. (1990). Performance of shisham (Dalbergia sissoo) in salt affected soils. The Indian Forester, 116, 154-162.
[118] Singh, K., Yadav, J. S. P., & Singh, V. (1992). Tolerance of trees to soil sodicity. Journal of Indian Society of Soil Science, 40, 173-179.
[119] Singh, K.P., & Misra, R. (1979). Structure and function of natural, modified and silvicultural ecosystem in eastern Uttar Pradesh. Final Technical Report (1975-1978). Banaras Hindu University, Varanasi: MAB Research Project.
[120] Singh, K. P., & Singh, R. P. (1981). Seasonal variations in biomass and energy of small roots in tropical dry deciduous forest, Varanasi, India. Oikos, 37, 88-92. doi:10.2307/3544077
[121] Singh, L., & Singh, J. S. (1991). Species structure, dry matter dynamics and carbon flux of a dry tropical forest in India. Annals of Botany, 68, 263-273.
[122] Singh, O., Sharma, D. C., Negi, M. S., & Singh, R. (1994). Leaf litter production and decomposition in Dalbergia sissoo and Bombax ceiba plantations in U.P. The Indian Forester, 120, 682-688.
[123] Singh, P. (1991). Management strategies for wasteland development. In R. K. Singh, A. K. Saxena and I. S. Singh, (Eds.), Agroforestry—Present status and scope for future development in farming systems (pp. 133-142). Kumarganj, Faizabad: Narendra Dev University of Agriculture and Technology.
[124] Singh, S. P., & Singh, J. S. (1989). Ecology of central Himalayan forests with special emphasis on sal forest ecosystem. In J. S. Singh and B. Gopal (Eds.), Perspectives in Ecology, Professor S.C. Pandeya Commemoration Volume (pp. 193-232). New Delhi: M/S Jagmander Book Agency.
[125] Sissay, B. (1986). Salt wasteland in Ethiopia: Potential for production of forage and fuel. Reclamation Revegetation Research, 5, 59-64.
[126] Srivastava, G. S. (1970). Behaviour and adoptability of some ornamental plants to “usar” soils. Indian Journal of Ornamental Horticulture, 11, 1-3.
[127] Srivastava, G. S. (1987). A man-made forest on sodic soils. In T.N. Khoshoo (Ed.), Ecodevelopment of alkaline land, Banthra—A case study (pp. 124-128). Lucknow: NBRI, CSIR.
[128] Sumner, M. E. (1993). Sodic soils: New perspectives. Australian Journal of Soil Research, 31, 683-750. doi:10.1071/SR9930683
[129] Tomar, O. S., & Yadav, J. S. P. (1980). Effect of saline irrigation water of varying EC, SAR and RSC levels on germination and seedling growth of some forest species. Indian Journal of Forestry, 3, 306- 314.
[130] Totey, N. G., Kulkarni, R., Showmik, A. K., Khatri, P. K., Dahia, V. K., & Prasad, A. (1987). Afforestation of salt affected wasteland I—Screening of forest tree species of Madhya Pradesh for salt tolerance. The Indian Forester, 113, 805-815.
[131] Toth, B. (1981). Afforestation on salt affected soils in Hungary. Agro- kemia Es Talajtan Tom, 30, 205-212.
[132] Tripathi, K. P., & Singh, B. (2009). Species diversity and vegetation structure across various strata in natural and plantation forests in Ka-tarniaghat Wildlife Sanctuary, North India. Tropical Ecology, 50, 191-200.
[133] Usman, S., Singh, S. P., & Rawat, Y. S. (1999). Fine root productivity and turnover in two evergreen Central Himalayan forests. Annals of Botany, 84, 87-94. doi:10.1006/anbo.1999.0894
[134] Vasalakshi, N. (1994). Fine root dynamics in two tropical dry evergreen forest of Southern Indian. Journal Bioscience, 19, 103-116. doi:10.1007/BF02703473
[135] Verma, R. K., Totey, N. G., & Gupta, B. N. (1997). Analysis of forest vegetation in the permanent preservation plot of Tamna in Orrisa. The Indian Forester, 123, 1007-1016.
[136] Verma, S. C., Jain, R. K., Rao, M. V., Misra, P. N., & Murty, A. S. (1982). Influence of canopy on soil composition of man-made forest in alkali soil of Banthra, Lucknow. The Indian Forester, 108, 431-437.
[137] Vitousek, P. M. (1984). Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology, 65, 285-298. doi:10.2307/1939481
[138] Vitousek, P. M., & Sanford, R. L. (1986). Nutrient cycling in moist tropical forests. Annual Review of Ecology and Systematics, 17, 137-167. doi:10.1146/
[139] Vogt, K. A., Grier, C. C., & Vogt, D. J. (1986). Production, turnover and nutrient dynamics of above and belowground detritus of world forests. Advance Ecological Restoration, 15, 303-377. doi:10.1016/S0065-2504(08)60122-1
[140] Vyas, L. N., Garg, R. K., & Vyas, L. N. (1977). Stand structure and aboveground biomass in dry deciduous forests of Aravalli Hills at Udaipur (Rajasthan), India. Biologia (Bratislava), 32, 265-270.
[141] Yadav, J. S. P. (1975). Improvement of saline alkali soil through biological methods. The Indian Forester, 101, 385-395.
[142] Yadav, J. S. P. (1980). Salt-affected soils and their afforestation. The Indian Forester, 106, 259-272.
[143] Yadav, J. S. P., & Singh, K. (1970). Tolerance of certain forest species to varying degree of salinity and alkalinity. The Indian Forester, 96, 587-599.
[144] Zobel, D. B., McKee, A., Hawk, G. M., & Dyrness, C. T. (1976). Relationships of environment to the composition, structure and diversity of forest communities of the central western cascades of Oregon. Ecological Monographs, 46, 135-156. doi:10.2307/1942248

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.