Share This Article:

Magnetic analyses of isosceles tricobalt(II) complexes containing two types of octahedral high-spin cobalt(II) ions

Abstract Full-Text HTML XML Download Download as PDF (Size:283KB) PP. 33-38
DOI: 10.4236/ojic.2011.13005    5,215 Downloads   10,921 Views   Citations

ABSTRACT

The observed magnetic data for two isosceles tricobalt(II) complexes have been successfully analyzed, considering the axial distortion around each cobalt(II) ion, the local spin-orbit coupling, the anisotropic exchange interactions, and the intermolecular exchange interactions. The complexes each contains two types of octahedral high-spin cobalt(II) ions (CoA and CoB) in the shape of an isosceles triangle (CoA1–CoB–CoA2), and the contribution of the orbital angular momentum is significant. The exchange interaction between the CoA and CoB ions is practically negligible (J = ~ 0), whereas the interaction between the CoA1 and CoA2 ions is ferromagnetic (J’ > 0) for both complexes.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sakiyama, H. , Adams, H. , Fenton, D. , Cummings, L. , McHugh, P. and Okawa, H. (2011) Magnetic analyses of isosceles tricobalt(II) complexes containing two types of octahedral high-spin cobalt(II) ions. Open Journal of Inorganic Chemistry, 1, 33-38. doi: 10.4236/ojic.2011.13005.

References

[1] Kahn, O. (1993) Molecular magnetism. VCH Publishers, New York.
[2] Lines, M.E. (1963) Magnetic properties of CoCl2 and NiCl2. Physical Review, 131, 546-555. doi:10.1103/PhysRev.131.546
[3] Figgis, B.N., Gerloch, M., Lewis, J., Mabbs, F.E. and Webb, G.A. (1968) The magnetic behaviour of cubic-field 4T1g terms in lower symmetry. Journal of Chemical Society A, 1, 2086-2093. doi:10.1039/j19680002086
[4] Lines, M.E. (1971) Orbital angular momentum in the theory of paramagnetic clusters. Journal of Chemical Physics, 55, 2977-2984. doi:10.1063/1.1676524
[5] Sakiyama, H., Ito, R., Kumagai, H., Inoue, K., Saka- moto, M., Nishida, Y. and Yamasaki, M. (2001) Dinuclear cobalt(II) complexes of an acyclic phenol-based dinucle- ating ligand with four methoxyethyl chelating arms— First magnetic analyses in an axially distorted octahedral field. European Journal of Inorganic Chemistry, 2001, 2027-2032.
[6] Sakiyama, H. (2001) Development of magsaki(A) software for the magnetic analysis of dinuclear high-spin cobalt(II) complexes considering anisotropy in exchange interaction. Journal of Chemical Software, 7, 171-178. doi:10.2477/jchemsoft.7.171
[7] Hossain, M.J., Yamasaki, M., Mikuriya, M., Kuribayashi, A. and Sakiyama, H. (2002) Synthesis, structure, and magnetic properties of dinuclear cobalt(II) complexes with a new phenol-based dinucleating ligand with four hydroxyethyl chelating arms. Inorganic Chemistry, 41, 4058-4062. doi:10.1021/ic0255297
[8] Sakiyama, H. (2006) Magnetic susceptibility equation for dinuclear high-spin cobalt(II) complexes considering the exchange interaction between two axially distorted octahedral cobalt(II) ions. Inorganica Chimica Acta, 359, 2097-2100. doi:10.1016/j.ica.2005.12.052
[9] Sakiyama, H. (2007) Magnetic susceptibility equation for dinuclear high-spin cobalt(II) complexes considering the ex- change interaction between two axially distorted octahedral cobalt(II) ions. Inorganica Chimica Acta, 360, 715-716. doi:10.1016/j.ica.2006.06.011
[10] Tone, K., Sakiyama, H., Mikuriya, M., Yamasaki, M. and Nishida, Y. (2007) Magnetic behavior of dinuclear co- balt(II) complexes assumed to be caused by a paramag- netic impurity can be explained by tilts of local distortion axes. Inorganic Chemistry Communications, 10, 944-947. doi:10.1016/j.inoche.2007.04.028
[11] Palii, A.V., Tsukerblat, B.S., Coronado, E., Clemente- Juan, J.M. and Borras-Almenar, J.J. (2003) Microscopic approach to the pseudo-spin-1/2 Hamiltonian for Kramers doublets in exchange coupled Co(II) pairs. Inorganic Chemistry, 42, 2455-2458. doi:10.1021/ic0259686
[12] Palii, A.V., Tsukerblat, B.S., Coronado, E., Clemente- Juan, J.M. and BorrasAlmenar, J.J. (2003) Orbitally dependent magnetic coupling between cobalt(II) ions: The problem of the magnetic anisotropy. The Journal of Chemical Physics, 118, 5566-5581. doi:10.1063/1.1555122
[13] Palii, A.V., Tsukerblat, B.S., Coronado, E., Clemente- Juan, J.M. and Borras-Almenar, J.J. (2003) Orbitally dependent kinetic exchange in cobalt(II) pairs: Origin of the magnetic anisotropy. Polyhedron, 22, 2537-2544. doi:10.1016/S0277-5387(03)00207-9
[14] Lloret, F., Julve, M. Cano, J., Ruiz-García, R. and Pardo, E. (2008) Magnetic properties of six-coordinated high- spin cobalt(II) complexes: Theoretical background and its application. Inorganica Chimica Acta, 361, 3432-3445. doi:10.1016/j.ica.2008.03.114
[15] Adams, H., Fenton, D.E., Cummings, L.R., McHugh, P.E., Ohba, M., Okawa, H., Sakiyama, H. and Shiga, T. (2004) The structures and magnetism of trinuclear Ni(II), Co(II) and Mn(II) complexes derived from unsymmetrical com- partmental ligands. Inorganica Chimica Acta, 357, 3648- 3656. doi:10.1016/j.ica.2004.03.055
[16] Scaringe, R.P., Hodgson, D.J. and Hatfield, W.E. (1978) The coupled representation matrix of the pair hamiltonian. Molecular Physics, 35, 701-713. doi:10.1080/00268977800100521
[17] Low, W. (1958) Paramagnetic and optical spectra of divalent cobalt in cubic crystalline fields. Physical Review, 109, 256-265. doi:10.1103/PhysRev.109.256
[18] Figgis B.N. and Hitchman, M.A. (2000) Ligand field theory and its application. Wiley-VCH, New York.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.