A Novel Approach in RF-MEMS Switch Analysis Using Time Domain TLM Method


In this paper the transmission line matrix (TLM) method is exploited to evaluate the electromagnetic field distribution over a new radio frequency micro electromechanical system (RF-MEMS). A hybrid symmetrical condensed node is used to analyze S-parameters of the switch in on and off states. Furthermore, the effects of spring zigzag cuts over the bridge are analyzed. Results have authorized that TLM method offers a much faster and more reliable results compare to other numerical methods because of its time domain behavior and transmission line basis.

Share and Cite:

A. Haghshenas, C. Ghobadi, J. Nourinia, D. Ahmadian and S. Soltani, "A Novel Approach in RF-MEMS Switch Analysis Using Time Domain TLM Method," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 10, 2011, pp. 395-398. doi: 10.4236/jemaa.2011.310062.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Nutaro, P. T. Kuruganti, R. Jammalamadaka, T. Tinoco, and V. Protopopescu, “An Event Driven, Simplified TLM Method for Predicting Path-Loss in Cluttered Environments,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 2008, pp. 189-198. doi:10.1109/TAP.2007.913083
[2] J.-M. Gorce, K. Jaffrès-Runser and G. de la Roche, “Deterministic Approach for Fast Simulations of Indoor Radio Wave Propagation,” IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 2007, pp. 938-948. doi:10.1109/TAP.2007.891811
[3] R. A. Sadeghzadeh, A. A. Lotfi Neyestanak, M. Jahanbakht and M. N. Moghaddasi, “Simulation of Wave Propagation through Window Structures by TLM Method,” in Farsi, Iranian Journal of Electrical and Computer Engineering, Vol. 6, No. 1, 2008, pp. 71-76.
[4] J. A. Portí, J. A. Morente, A. Salinas, E. A. Navarro and M. Rodríguez-Sola, “A Generalized Dynamic Symmetrical Condensed TLM Node for the Modeling of Time-Varying Electromagnetic Media,” IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 2006, pp. 2-11. doi:10.1109/TAP.2005.861543
[5] H. Jin and R. Vahldieck, “Direct Derivations of TLM Symmetrical Condensed Node and Hybrid Symmetrical Condensed Node from Maxwell’s Equations Using Centered Differencing and Averaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 42. No. 12, 1994, pp. 2554-2561.
[6] V. Trenkic, C. Christopoulos and T. M. Benson, “Generally Graded TLM mesh using the Symmetrical Supercondensed Node,” Electronics Letters, Vol. 30, No. 10, 1994, pp. 795-797. doi:10.1049/el:19940552
[7] Z. Z. Chen, and M. M. Ney, “On the Relationship between the Time-Domain and Frequency-Domain TLM Methods,” IEEE Antennas and Wireless Propagation Letters, Vol. 7, 2008, pp. 46-49. doi:10.1109/LAWP.2008.915803
[8] J. M. Frye and A. Q. Martin, “Extrapolation of Time and Frequency Responses of Resonant Antennas Using Damped Sinusoids and Orthogonal Polynomials,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 2008, pp. 933-943. doi:10.1109/TAP.2008.919195
[9] J. Rizk, G.-L. Tan, J. B. Muldavin and G. M. Rebeiz, “High-Isolation W-Band MEMS Switches,” IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 2001, pp. 10-12. doi:10.1109/7260.905952
[10] M. Jahanbakht, M. N. Moghaddasi and A. A. Lotfi Neyestanak, “Fractal Beam Ku-Band Mems Phase Shifter,” Progress In Electromagnetics Research Letters, Vol. 5, 2008, pp. 73-85. doi:10.2528/PIERL08101703
[11] M. Jahanbakht, M. N. Moghaddasi and A. A. Lotfi Neyestanak, “Low Actuation Voltage Ka-Band Fractal MEMS Switch,” Progress In Electromagnetics Research C, Vol. 5, 2008, pp. 83-92.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.