Theoretical Investigations of Ti-Based Binary Shape Memory Alloys
Rita John, Hannah Ruben
.
DOI: 10.4236/msa.2011.210184   PDF    HTML     5,723 Downloads   10,373 Views   Citations

Abstract

The electronic structure and ground state properties of TiX (X = Fe, Ni, Pd, Pt and Cu) type Shape Memory alloys have been calculated using the self consistent Tight- Binding Linear Muffin Tin Orbital (TB-LMTO) method. The systematic total energy studies made on TiX alloys in both B2 and (B19/B19’) structures successfully explain the structural stability of these compounds. The equilibrium lattice parameters, bulk moduli (Bo), cohesive energy (Ecoh) and heat of formation (ΔH) are calculated for these systems and compared with the available experimental and other theoretical results. The bonding nature of these TiX alloys is analyzed via the density of states (DOS) histogram.

Share and Cite:

R. John and H. Ruben, "Theoretical Investigations of Ti-Based Binary Shape Memory Alloys," Materials Sciences and Applications, Vol. 2 No. 10, 2011, pp. 1355-1366. doi: 10.4236/msa.2011.210184.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Morgiel, “Ordering of the β Phase in TiNiCu and TiNiCuMn Melt Spun Ribbons Studied with the ALCHEMI Technique,” Materials Chemistry and Physics, Vol. 81, No. 2-3, 2003, pp. 230-232. doi:10.1016/S0254-0584(02)00556-4
[2] S. A. Shabalovskaya, “Phase Transitions in the Intermetallic Compound TiNi with Charge-Density Wave Formation,” Physica Status Solidi (B), Vol. 132, No. 2, 1985, pp. 327-344. doi:10.1002/pssb.2221320202
[3] Y. Y. Ye, C. T. Chan and K. M. Ho, “Structural and Electronic Properties of the Martensitic Alloys TiNi, TiPd and TiPt,” Physical Review B, Vol. 56, No. 7, 1997, pp. 3678-3679. doi:10.1103/PhysRevB.56.3678
[4] H. L. Skriver, “The LMTO Method,” Springer, Heidelberg, 1984.
[5] O. K. Anderson and O. Jepsen, “Explicit, First-Principles Tight-Binding Theory,” Physical Review Letters, Vol. 53, 1984, pp. 2571-2574. doi:10.1103/PhysRevLett.53.2571
[6] V. von Barth and L. Hedin, “A Local Exchange-Correla- tion Potential for the Spin Polarized Case,” Journal of Physics C: Solid State Physics, Vol. 5, No. 13, 1972, pp. 1673-1642. doi:10.1088/0022-3719/5/13/012
[7] O. Jepsen and O. K. Anderson, “The Electronic Structure of h.c.p Ytterbium,” Solid State Communications, Vol. 9, No. 20, 1971, pp. 1763-1767. doi:10.1016/0038-1098(71)90313-9
[8] P. Blochl, “Gesamtenergien, Kr?fte und Metall-Halbleiter Grenzfl?chen (Total energies, Forces and Metal-Semi- conductor Interfaces,” PhD Thesis, University of Stuttgart, Stuttgart, 1989.
[9] J. M. Zhang and G. Y. Guo, “Electronic and Phase Stability of Three Series of B2 Ti-Transition-Metal Compound,” Journal of Physics: Condensed Matter, Vol. 7, No. 30, 1995, p. 6001. doi:10.1088/0953-8984/7/30/006
[10] M. Sanati, R. C. Albers and F. J. Pinski, “Electronic and Crystal Structure of NiTi Martensite,” Physical Review B, Vol. 58, No. 20, 1998, pp. 13590-13593. doi:10.1103/PhysRevB.58.13590
[11] Y. Kudoh, M. Tokonami, S. Miyazaki and Kotsuka, “Crys- tal Structure of the Mertensite in Ti-49.2 at% Ni Alloy Analyzed by the Single Crystal X-Ray Diffraction Method,” Acta Metallurgica, Vol. 33, No. 11, 1985, pp. 2049-2056. doi:10.1016/0001-6160(85)90128-2
[12] P. Ravindran and R. Asokamani, “Electronic Structure, Phase Stability, Equation of State and pressure Dependent Superconducting Properties of Zr3Al,” Physical Review B, Vol. 50, No. 2, 1994, pp. 668-673. doi:10.1103/PhysRevB.50.668
[13] V. L. Maruzz, J. F. Janak and K. Schwarz, “Calculated Thermal Properties of Metals,” Physical Review B, Vol. 37, No. 2, 1988, pp. 790-799. doi:10.1103/PhysRevB.37.790
[14] A. Gyobu, Y. Kawamura, H. Horikawa and T. Saburi, “Martensitic Transformation and Two-Way Shape Memory Effect of Sputter-Deposited Ni-Rich Ti-Ni Alloy Films,” Materials Science and Engineering: A, Vol. 273, 1999, pp. 749-753. doi:10.1016/S0921-5093(99)00409-8
[15] G. Bihlmayer, R. Eibler and A. Nickel, “Electronic Struc- ture of B2-NiTi and -PdTi,” Journal of Physics C: Solid State Physics, Vol. 5, 1993, pp. 5083-5090.
[16] H. J. Liu and Y. Ye, “Electronic Structure and Stability of Ti-Based Shape Memory Alloys by LMTO-ASA,” Solid State Communications, Vol. 106, No. 4, 1998, pp. 197-202. doi:10.1016/S0038-1098(98)00008-8
[17] P. Ravindran and R. A. Asokmani, “Ground-State Properties and Relative Stability between the L12 and DOa Phases of Ni3Al by Nb Substitution,” Physical Review B, Vol. 53, No. 3, 1996, pp. 1129-1137.
[18] S. A. Shabalovskaya and A. Narmonev, “Electronic Struc- ture and Stability of Ti-Based B2 Shape-Memory Compounds: X-Ray and Ultraviolet Photoelectron Spectra,” Physical Review B, Vol. 48, No. 18, 1993, pp. 13296- 13311. doi:10.1103/PhysRevB.48.13296
[19] G. Cacciamani, J. De keyzer, R. Ferro and Klotz UE, “Critical Evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti Alloy Systems,” Intermetallics, Vol. 14, No. 11, pp. 1312-1325. doi:10.1016/j.intermet.2005.11.028
[20] J. Cai, D. S. Wang, S. J. Liu, S. Q. Duan and B. K. Ma, “Electronic Structure and B2 Phase Stability of Ti-based Shape-Memory Alloys,” Physical Review B, Vol. 60, No. 23, 1999, pp. 15691-15698. doi:10.1103/PhysRevB.60.15691
[21] P. Vajeeston, P. Ravindran, C. Ravi and R. Asokamani, “Electronic Structure, Bonding, and Ground-State Properties of AlB2-Type Transition-Metal Diborides,” Physical Review B, Vol. 63, No. 4, 2001, pp. 5115-5126. doi:10.1103/PhysRevB.63.045115
[22] G. Bozzolo, R. D. Noebe, H. O. Mosca, “Site Preference of Ternary Alloying Additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf,” Journal of Alloys and Compounds, Vol. 389, No. 1-2, 2005, pp. 80-94. doi:10.1016/j.jallcom.2004.07.051
[23] R. F. Decker and J. R. Mihalisin, “Coherency Strains in γ’ Hardened Nickel Alloys,” Transactions of the American Society of Metals Quarterly, Vol. 62, 1969, pp. 481-489.
[24] J. H. Xu, T. Oquchi and A. J. Freeman, “Phase Stability and Magnetism of Ni3Al,” Physical Review B, Vol. 41, No. 8, 1990, pp. 5010-5016. doi:10.1103/PhysRevB.41.5010
[25] K. P. Mohancachandra, D. Shin and G. P. Carman, “Deposition and Characterization of Ti-Ni-Pd and Ti-Ni-Pt Shape Memory Alloy Thin Films,” Smart Materials and Structures, Vol. 14, No. 5, 2005, pp. 312-316. doi:10.1088/0964-1726/14/5/021

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.