Industrial X-Ray Image Enhancement Algorithm based on AH and MSR
Wei Jie, Wang Dada, Yanwei Wang, Jin Li, Wang Lei, Hong Liang
DOI: 10.4236/eng.2011.310129   PDF    HTML     4,582 Downloads   7,916 Views   Citations


An X-ray image enhancement algorithm based on AH(adaptive histogram) and MSR( Multi-scale Retinex )algorithm is proposed in this paper for the industrial X-ray image, which contrast is low, and the detail features is poor. Firstly, the contrast limited adaptive histogram equalization and neighborhood algorithm is used for the image. Then the mapping is built between the image and the detail scales by the enhance function ratio rules, which is adjusted by the local contracting information. Finally, according the enhance function radios, the reconstructed image is rebuild. Compared with other image enhancement algorithms, experimental results show that our algorithm can improve the global image effectively, moreover it overcomes the visible artifacts of X-ray image. Therefore, the x-ray image becomes clearer, and a better perceptual image is acquired for the image feature recognizing and matching.

Share and Cite:

W. Jie, W. Dada, Y. Wang, J. Li, W. Lei and H. Liang, "Industrial X-Ray Image Enhancement Algorithm based on AH and MSR," Engineering, Vol. 3 No. 10, 2011, pp. 1040-1044. doi: 10.4236/eng.2011.310129.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Yang, C. Wang and L. G. Deng, “A New Approach of Image Enhancement Based on Multi-Scale Morphological Reconstruction,” 9th International Conference on Hybrid Intelligent Systems, Shenyang, 12-14 August 2009, pp. 113-116. doi:10.1109/HIS.2009.30
[2] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 7, 1989, pp. 674-693. doi:10.1109/34.192463
[3] S. M. Pizer and E. P. Ambtrrn, “Adaptive Histogram Equalization and Its Variations,” Computer Vision Gra- phics & Image Processing, Vol. 39, No. 3, 1987, pp. 355-368. doi:10.1016/S0734-189X(87)80186-X
[4] J. S. Tang, X. M. Liu and Q, L. Sun, “A Direct Image Contrast Enhancement Algorithm in the Wavelet Domain for Screening Mammograms,” IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 1, 2009, p. 1.
[5] X.-B. Wang, “Image Enhancement Based on Lifting Wavelet Transform,” 4th International Conference on Computer Science & Education, Xiamen, 25-28 July 2009, pp. 739-741.
[6] J. S. Tang, Q. L. Sun and K. Agyepong, “An Image Enhancement Algorithm Based on a Contrast Measure in the Wavelet Domain for Screening Mammograms,” IEEE International Conference on Image Processing, San Antonio, 16-19 September 2007, pp. 74-80. doi:10.1109/ICIP.2007.4379757
[7] J. M. Morel, A. B. Petro and C. A. Sbert, “PDE Formalization of Retinex Theory,” IEEE Transactions on Image Processing, Vol. 19, No. 11, 2010, pp. 2825-2837. doi:10.1109/TIP.2010.2049239

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.