Structure Transformations in the Polycrystalline (Ti,Nb)3Al Alloy under Shock-Wave Loading

DOI: 10.4236/jmp.2011.210141   PDF   HTML     3,476 Downloads   6,090 Views  


Structure transformations in the two-phase (Ti, Nb)3Al alloy, induced by shock-wave loading, were studied. The samples were subjected to an impact of a steel plate. The maximum pressure on the samples’ surfaces was 100 GPa, while the maximum temperature was 573 K. The β0α2 phase transformation occurred during strong deformations. High temperature rectilinear dislocations (such types of dislocations usually could arise at 1073 K) with the c-component, which occasionally formed slip bands, were located at the α2-phase grains after the shock. The deformation α2-phase twins were not observed.

Share and Cite:

N. Kazantseva and E. Shorokhov, "Structure Transformations in the Polycrystalline (Ti,Nb)3Al Alloy under Shock-Wave Loading," Journal of Modern Physics, Vol. 2 No. 10, 2011, pp. 1141-1145. doi: 10.4236/jmp.2011.210141.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. I. Zababakhin, “Some Problems of Explosion Gas Dynamics,” Russian Research Institute of Technical Physics—Russian Federal Nuclear Center, Snezhinsk, 1997, 207 Pages.
[2] Z. Q. Wang, I. J. Beyerlein and R. LeSar, “Dislocation Motion in High Strain-Rate Deformation,” Philosophical Magazine A, Vol. 87, No. 16-17, 2007, pp. 2263-2279. doi:10.1080/14786430601153422
[3] B. A. Remington, P. Allen, E. M. Bringa, J. Hawreliak, D. Ho, K. T. Lorenz, H. Lorenzana, J. M. Mc Naney, M. A. Meyers, S. W. Pollaine, K. Rosolankova, B. Sadik, M. S. Schneider, D. Swift, J. Wark and B. Yaakobi, “Material Dynamics under Extreme Conditions of Pressure and Strain Rate,” Materials Science and Technology, Vol. 22, No. 4, 2006, pp. 474-488. doi:10.1179/174328406X91069
[4] M. H Yoo, C. L. Fu and J. K. Lee, “Deformation Twinning in Metals and Ordered Intermetallics-Ti and Ti- Aluminides,” Journal de Physique III, Vol. 1, 1991, pp. 1065-1067. doi:10.1051/jp3:1991172
[5] M. Ikebuchi, H. Inui, Y. Shirai, M. Yamaguchi, S. Fujita and T. Nishisako, “Microstructures of Some Intermetallic Compounds Deformed by Impact Loading,” Materials Science and Engineering, Vol. A192-193, 1995, pp. 289- 304. doi:10.1016/0921-5093(94)03237-8
[6] N. V. Kazantseva, B. A. Greenberg, A. A. Popov and E. V. Shorokhov, “Phase Transformations in Ni3Al, Ti3Al and Ti2AlNb Intermetallics under Shock-Wave Loading,” Journal de Physique IV France, Vol. 110, 2003, pp. 923-928. doi:10.1051/jp4:20020812
[7] K. Kishida, Y. Takahama and H. Inui, “Deformation Twinning in Single Crystals of a D019 Compound with an Off-Stoichiometric Composition (Ti-36.5 at.%Al),” Acta Materialia, Vol. 52, No. 16, 2004, pp. 4941-4952. doi:10.1016/j.actamat.2004.06.051
[8] M. A. Morris and D. G. Morris, “Strain Localization, Slip-Band Formation and Twinning Associated with Deformation of a Ti-24 at.% Al─11 at.% Nb Alloy,” Philosophical Magazine A, Vol. 63, 1991; pp. 1175-1178. doi:10.1080/01418619108205576
[9] L. E. Kar’kina and L. I. Yakovenkova, “Temperature Anomalies of Deformation Behavior and Dislocation Structure of Ti3Al: A Review,” Fizika Metallov i Metallovedenie, Vol. 108, No. 2, 2009, pp. 188-216. doi:10.1134/S0031918X09080110
[10] S. A. Court, J. P. A. Lofvander, M. H. Loretto and H. L. Fraser, “The Influence of Temperature and Alloying Additions on the Mechanisms of Plastic Deformation of Ti3Al,” Philosophical Magazine A, Vol. 61, No. 1, 1990, pp. 109-139. doi:10.1080/01418619008235561
[11] S. Suwas, R. K. Ray, A. K. Singh and S. Bhargava, “Evolution of Hot Rolling Textures in a Two-Phase (α2 + β) Ti3Al Base Alloy,” Acta Materialia, Vol. 47, No. 18, 1999, pp. 4585-4598. doi:10.1016/S1359-6454(99)00327-4

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.