Microstructure, Corrosion, and Fatigue Properties of Alumina-Titania Nanostructured Coatings
Ahmed Ibrahim, Abdel Salam Hamdy
DOI: 10.4236/jsemat.2011.13015   PDF    HTML     6,590 Downloads   12,618 Views   Citations


Air Plasma spray process was used to deposit a conventional and nanostructured Al2O3-13 wt% TiO2 coatings on a stainless steel substrates. Morphology of the powder particles, microstructure and phase composition of the coatings were characterized by XRD and SEM. Potentiodynamic polarization tests and Electrochemical Impedance Spectro- scopy (EIS) were used to analyze the corrosion of the coated substrate in 3.5% NaCl solutions to determine the opti-mum conditions for corrosion protection. The fatigue strength and hardness of the coatings were investigated. The experimental data indicated that the nanostructured coated samples exhibited higher hardness and fatigue strength compared to the conventional coated samples. On the other hand, the conventional coatings showed a better localized corrosion resistance than the nanostructured coatings.

Share and Cite:

A. Ibrahim and A. Hamdy, "Microstructure, Corrosion, and Fatigue Properties of Alumina-Titania Nanostructured Coatings," Journal of Surface Engineered Materials and Advanced Technology, Vol. 1 No. 3, 2011, pp. 101-106. doi: 10.4236/jsemat.2011.13015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Iwaszko, “Surface Remelting Treatment of Plasma- Sprayed Al2O3 + 13 wt% TiO2 Coatings,” Surface and Coatings Technology, Vol. 201, No. 6, 2006, pp. 3443- 3451. doi:10.1016/j.surfcoat.2006.07.234
[2] E. H. Jordan, M. Gell and Y. H. Sohn, et al., “Fabrication and Evaluation of Plasma Sprayed Nanostructured Alu- mina-Titania Coatings with Superior Properties,” Ma- terials Science and Engineering A, Vol. 301, No. 1, 2001, pp. 80-89. doi:10.1016/S0921-5093(00)01382-4
[3] E. Song, J. Ahn, S. Lee and N. Kim, “Effects of Critical Plasma Spray Parameter and Spray Distance on Wear Resistance of Al2O3 – 8 wt% TiO2 Coating Plasma- Sprayed with Nanopowders,” Surface & Coatings Tech- nology, Vol. 202, No. 2, 2008, pp. 3625-3632.
[4] M. Gell, E. H. Jordan, Y. H. Sohn, D. Goberman, L. Shaw and T. D. Xiao, “Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings,” Surface and Coating Technology, Vol. 146-147, No. 1, 2001, pp. 48-54. doi:10.1016/S0257-8972(01)01470-0
[5] A. Ibrahim, H. Salem and S. Sedky, “Excimer Laser Sur- face Treatment of Plasma Sprayed Al2O3 + 13 wt% TiO2 Coatings,” Surface and Coating Technology, Vol. 203, No. 2, 2009, pp. 3579-3589. doi:10.1016/j.surfcoat.2009.05.034
[6] D. Goberman, Y. H. Sohn, L. Shaw, E. Jordan and M. Gell, “Microstructure Development of Al2O3 – 13 wt% TiO2 Plasma Sprayed Coatings Derived from Nanocry- stalline Powders,” Acta Materialia, Vol. 50, No. 5, 2002, pp. 1141-1152. doi:10.1016/S1359-6454(01)00414-1
[7] H. Gleiter, “Nanostuctured Materials: Basic Concepts and Microstructure,” Acta Materialia, Vol. 48, No. 1, 2000, pp. 1-29. doi:10.1016/S1359-6454(99)00285-2
[8] M. Wang and L. Shaw, “Effects of Powder Man- ufacturing Methods on Microstructure and WearPerfor- mance of Plasma Sprayed Alumina-Titania Coaings,” Sur-face and Coating Technology, Vol. 202, No. 1, 2007, pp. 34-44. doi:10.1016/j.surfcoat.2007.04.057
[9] J. Zhang, Z. Wang, P. Lin, W. LU, Z. Zhou and S. Jiang, “Effect of Sealing Treatment on the corrosion resistance of Plasma-Sprayed NiCrAl/Cr2O3 – 8 wt% TiO2 Coating,” Journal of Thermal Spray Technolog, Vol. 20, No. 3, 2010, pp. 508-513. doi:10.1007/s11666-010-9528-6
[10] S. Liscano, L. Gil and M. H. Staia, “Effect of Sealing Tr- eatment on the Corrosion Resistance of Thermal-Sprayed Ceramic Coatings,” Surface and Coatings Technology, Vol. 188-189, No. 1, 2004, pp. 135-139. doi:10.1016/j.surfcoat.2004.08.009
[11] J. Creus, H. Idrissi, H. Mazille, F. Sanchette and P. Jacquot, “Corrosion Behaviour of Al/Ti Coating Elaborat- ed by Cathodic Arc PVD Process onto Mild Steel Sub- Strate,” Thin Solid Films, Vol. 346, No. 1-2, 1999, pp. 150-154.
[12] A. Ibrahim and C. Berndt, “The Effect of High-Velocity Oxygen Fuel, Thermally Sprayed WC-Co on the High Cycle Fatigue (HCF) of Aluminum and Steel Thermally Sprayed with WC-Co,” Journal of Material Science, Vol. 33, No. 2, 1998, pp. 3095-3100.s Science, Vol. 33, 12, 199
[13] A. Ibrahim and C. Berndt, “Fatigue and Deformations of HVOF Sprayed WC-Co Coatings vs. Hard Chrome Plat-ing,” International Thermal Spray Conference, Vol. 1, No. 1, 2003, pp. 377-380.
[14] H. J. C. Voorwald, R. C. Souza, W. L. Pigatin and M. O. H. Cioffi, “Evaluation of WC-17Co and WC-10Co-4Cr Thermal Spray Coatings by HVOF on the Fatigue and Corrosion Strength of AISI 4340 Steel,” Surface and Coat- ings Technology, Vol. 190, No. 2, 2005, pp. 154-164. doi:10.1016/j.surfcoat.2004.08.181
[15] R. Ahmed and M. Hadfield, “Mechanisms of Fatigue Failure in Thermal Spray Coatings,” Journal of Thermal Spray Technology, Vol. 11, No. 3, 2002, pp. 333-349. doi:10.1361/105996302770348727
[16] Y. Wang, S. Jiang, M. Wang, S. Wang, T. D. Xiao and P. R. Strutt, “Abrasive Wear Characteristics of Plasma Spr- ayed Nanostructured Alumina/Titania Coatings,” Wear, Vol. 237, No. 1, 1999, pp. 176-185.
[17] R. S. Lima and B. R. Marple, “Process-Property-Perfor- mance Relationships for Titanium Dioxide Coatings En-gineered from Nanostructured and Conventional Pow- ders,” Materials & Design, Vol. 29, No. 1, 2008, pp. 1845-1855. doi:10.1016/j.matdes.2008.03.005
[18] R. S. Lima, S. Dimitrievska , M. N. Bureau, B. R. Marple, A. Petit, F. Mwale and J. Antoniou, “HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocom- patibility,” Journal of Thermal Spray Technology, Vol. 19, No. 1-2, 2010, pp. 336-343. doi:10.1007/s11666-009-9442-y
[19] R.S. Lima and B. R. Marple, “Thermal Spray Coatings Engineered from Nanostructured Ceramic Powders for Structural, Thermal Barrier and Biomedical Applications: A Review,” Journal of Thermal Spray Technology, Vol. 16, No. 1, 2007, pp. 40-63. doi:10.1007/s11666-006-9010-7
[20] P. Bansal, N. P. Padture, A. Vasiliev, “Improved Interfa-cial Mechanical Properties of Al2O3 – 13 wt% TiO2 Plasmasprayed Coatings Derived from Nanocrystalline Powders,” Acta Materials, Vol. 51, No. 10, 2003, pp. 2959-2970. doi:10.1016/S1359-6454(03)00109-5

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.