Share This Article:

3D DOPs for Positioning Applications Using Range Measurements

Abstract Full-Text HTML Download Download as PDF (Size:677KB) PP. 334-340
DOI: 10.4236/wsn.2011.310037    4,941 Downloads   8,553 Views   Citations

ABSTRACT

For terrestrial positioning, some applications require three dimensional coordinates. The Dilution of precisions (DOPs) for position systems using range measurement are reviewed and the average values of DOPs for different deployments of base station geometries are examined. It is shown that to obtain the lowest DOPs, the base stations for different types of positioning systems need to be deployed differently. Changing the N-sided regular polygon to an (N - 1)-sided polygon with one base station in the centre of the polygon can decrease the value of DOP in general for a pseudorange time of arrival (TOA) system but not for an absolute range TOA system. The height of the base station in the centre can also change the DOP significantly. The finding can be used to optimize the deployment of the base stations for range measurement positioning systems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Li, A. Dempster and J. Wang, "3D DOPs for Positioning Applications Using Range Measurements," Wireless Sensor Network, Vol. 3 No. 10, 2011, pp. 334-340. doi: 10.4236/wsn.2011.310037.

References

[1] B. W. Parkinson and J. J. Spilker, “Global Positioning System: Theory an Applications, Volume I,” American Institute of Aeronautics and Astronautics, Inc., Washington, 1996.
[2] C. Rizos, G. Roberts, J. Barnes and N. Gambale, “Experimental Results of Locata: A High Accuracy Indoor Positioning System,” 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, 15-17 September 2010, pp. 1-7. doi:10.1109/IPIN.2010.5647717
[3] D. Cyganski, J. Duckworth, S. Makarov, W. Michalson, J Orr, V. Amendolare, J. Coyne, H. Daempfling, S. Kulkarni and H. Parikh, “WPI Precision Personnel Locator System,” Proceeding Institute of Navigation, National Technical Meeting, San Diego, 22-24 January 2007, p. 22.
[4] N. B. Priyantha, A. Chakraborty and H. Balakrishnan, “The Cricket Location-Support System,” Proceedings of the 6th Annual International Conference on Mobile Computing and Networking ACM, New York, 6-11 August, 2000, p. 32.
[5] M. Rabinowitz, and J. J. Spilker Jr, “A New Positioning System Using Television Synchronization Signals,” IEEE Transactions on Broadcasting, Vol. 51, No. 1, 2005, pp. 51-61. doi:10.1109/TBC.2004.837876
[6] T. Sathyan, D. Humphrey, M. Hedley and M. Johnson, “A Wireless Indoor Localization Network—System Introduction and Trial Results,” IGNSS Symposium 2009, Gold Coast, 1-3 December.
[7] T. G. Thorne (Ed.), “Navigation Systems for Aircraft and Space Vehicles,” Pergamon Press, Oxford, 1962.
[8] C. Drane, M. Macnaughtan and C. Scott, “Positioning GSM Telephones,” IEEE Communications Magazine, Vol. 36, No. 4, 1998, pp. 46-54. doi:10.1109/35.667413
[9] B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins, “GPS Theory and Practice,” 5th Edition, Springer, New York, 2001.
[10] E. Kaplan (Ed.), “Understanding GPS: Principles and Applications,” 2nd Edition, Artech House, Norwood, 2005.
[11] R. Yarlagadda, I. Ali, N. Al-Dhahir and J. Hershey, “GPS GDOP Metric,” IEE Proceedings Radar Sonar and Navigation, Vol. 147, No. 5, 2002, pp. 259-264. doi:10.1049/ip-rsn:20000554
[12] R. B. Langley, “Dilution of Precision,” GPS World, Vol. 10, No. 5, 1999, pp. 52-59.
[13] H. B. Lee, “Accuracy Limitations of Hyperbolic Multilateration Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-11, No. 1, 1975, pp. 16-29. doi:10.1109/TAES.1975.308024
[14] H. B. Lee, “A Novel Procedure for Assessing the Accuracy of Hyperbolic Multilateration Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-11, No. 1, 1975, pp. 2-15. doi:10.1109/TAES.1975.308023
[15] Y. Zhao, “Mobile Phone Location Determination and Its Impact on Intelligent Transportation Systems,” IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 1, 2000, p. 55. doi:10.1109/6979.869021
[16] H. Laitinen, S. Ahonen, S. Kyriazakos, J. Lahteenmaki, R. Menolascino and S. Parkkila, “Cellular Location Technology,” 2000. http://www.vtt.fi/tte/tte35/pdfs/CELLOWP2-VTT-D03-007-Int.pdf
[17] P. Steggles and S. Gschwind, “The Ubisense Smart Space Platform,” Adjunct Proceedings of the Third International Conference on Pervasive Computing, Vol. 191, May 2005, pp. 73-76.
[18] A. G. Dempster, “Dilution of Precision in Angle-of-Arrival Positioning Systems,” Electronics Letters, Vol. 42, No. 5, 2006, pp. 291-292. doi:10.1049/el:20064410
[19] N. Levanon, “Lowest GDOP in 2-D Scenarios,” IEE Proceedings—Radar, Sonar and Navigation, Vol. 147, No. 3, 2002, pp. 149-155. doi:10.1049/ip-rsn:20000322
[20] D. H. Shin and T. K. Sung, “Comparisons of Error Characteristics between TOA and TDOA Positioning,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1, 2002, pp. 307-311. doi:10.1109/7.993253
[21] Vaisala, “PTU300 Combined Pressure, Humidity and Temperature Transmitter for Demanding Applications,” 2011.http://www.vaisala.com/Vaisala%20Documents/Brochures%20and%20Datasheets/PTU300-Combined-Datasheet-B210954EN-B-LoRes.pdf

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.